• 1
    Alivisatos, A. P. (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 1322613239.
  • 2
    Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals, and quantum dots science. Science 271, 933937.
  • 3
    Galian, R. E., M. de la Guardia and J. Pérez-Prieto (2009) Photochemical size reduction of CdSe and CdSe/ZnS semiconductor nanoparticles assisted by nπ* aromatic ketones. J. Am. Chem. Soc. 131, 892893.
  • 4
    Galian, R. E., M. de la Guardia and J. Pérez-Prieto (2011) Size reduction of CdSe/ZnS core-shell quantum dots photosensitized by benzophenone: Where does the Cd(0) go? Langmuir 27, 19421945.
  • 5
    Sardar, R., A. M. Funston, P. Mulvaney and R. W. Murray (2009) Gold nanoparticles: Past, present, and future. Langmuir 25, 1384013851.
  • 6
    Sau, T. K., A. Pal, M. C. Daniel and D. Astruc (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293346.
  • 7
    Kreibig, U. and M. Vollner (1995) Optical Properties of Metal Clusters. Springer, Berlin.
  • 8
    Satoh, N., H. Hasegawa and K. Tsujii (1994) Photoinduced coagulation of Au nanocolloids. J. Phys. Chem. 98, 21432147.
  • 9
    Takami, A., H. Kurita and S. Koda (1999) Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 103, 12261232.
  • 10
    Inasawa, S., M. Sugiyama and Y. Yamaguchi (2005) Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting. J. Phys. Chem. B 109, 31043111.
  • 11
    Pocoví-Martínez, S., M. Parreño-Romero, S. Agouram and J. Pérez-Prieto (2011) Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles. Langmuir 27, 52345241.
  • 12
    Carrillo-Carrión, C., S. Cárdenas, B. M. Simonet and M. Valcárcel (2009) Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem. Commun. 21, 52145226.
  • 13
    Peng, Z. A. and X. Peng (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183184.
  • 14
    Talapin, D. V., A. L. Rogach, A. Kornowski, M. Haase and H. Weller (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide – trioctylphospine mixture. Nano Lett. 1, 207211.
  • 15
    Bullen, C. and P. Mulvaney (2006) The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22, 30073013.
  • 16
    Breus, V., C. D. Heyes and G. U. Nienhaus (2007) Quenching of CdSe-ZnS core-shell quantum dot luminescence by water-soluble thiolated ligands. J. Phys. Chem. C 111, 1858918594.
  • 17
    Koole, R., P. Schapotschnikow, C. de Mello Donega, T. J. H. Vlugt and A. Meijerink (2008) Time-dependent photoluminescence spectroscopy as a tool to measure the ligand exchange kinetics on a quantum dot surface. ACS Nano 2, 17031714.
  • 18
    Munro, A. M., H. J.-L. Plante, M. S. Ng and D. S. Ginger (2007) Qualitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 111, 62206227.
  • 19
    Pong, B.-K., B. L. Trout and J.-Y. Lee (2008) Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantumdots in water: A procedure guided by computational studies. Langmuir 24, 52705276.
  • 20
    Susumu, K., E. Oh, J. B. Delehanty, J. B. Blanco-Canosa, B. J. Johnson, V. Jain, W. J. Hervey IV, W. R. Algar, K. Boeneman and P. E. Dawson (2011) Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J. Am. Chem. Soc. 133, 94809496.
  • 21
    Liu, W., H. S. Choi, J. P. Zimmer, E. Tanaka, J. V. Frangioni and M. Bawendi (2007) Compact cysteine-coated CdSe(ZnCdS) QDs for in vivo applications. J. Am. Chem. Soc. 129, 1453014531.
  • 22
    Gill, R., I. Wilner, I. Shweky and U. Banin (2005) Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: Probing hybridization and DNA cleavage. J. Phys. Chem. B 109, 2371523719.
  • 23
    Aguilera-Sigalat, J., S. Rocton, R. E. Galian and J. Pérez-Prieto (2011) Fluorescence enhancement of amine-capped CdSe/ZnS quantum dots by thiol addition. Can. J. Chem. 89, 359363.
  • 24
    Aguilera-Sigalat, J., S. Rocton, Juan. F. Sánchez-Royo, R. E. Galian and J. Pérez-Prieto (2012) Highly fluorescent and photostable organic- and water-soluble CdSe/ZnS core-shell quantum dots capped with thiols. RSC Adv. 2, 16321638.
  • 25
    Brust, M., M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman (1994) Synthesis of thiol derivatized gold nanoparticlesin a 2-phase liquid-liquid system. J. Chem. Soc; Chem. Commun. 801802.
  • 26
    Qi, H. and T. Hegmann (2008) Post-synthesis racemization and place exchange reactions – one step further to understand the origin of chiral ligand-capped gold nanoparticle chirality. J. Am. Chem. Soc. 130, 1420114206.
  • 27
    Turkevich, J., P. C. Stevenson and J. Hilier (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 5575.
  • 28
    Frens, G. (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. 241, 2022.
  • 29
    Oh, E., K. Susumu, R. Goswami and H. Mattoussi (2010) One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities. Langmuir 26, 76047613.
  • 30
    Zhu, J., C. Waengler, R. B. Lennox and R. Schirrmacher (2012) Preparation of water-soluble maleimide-functionalized 3 nm gold nanoparticles: A new bioconjugation template. Langmuir 28, 55085512.
  • 31
    Cuquerella, M. C., S. Pocoví-Martinez and J. Pérez-Prieto (2010) Photocatalytic coalescence of functionalized gold nanoparticles. Langmuir 26, 15481550.
  • 32
    Cuquerella, M. C., S. Pocoví-Martinez and J. Pérez-Prieto (2011) Photosensitised seeding of thiolate-stabilised gold nanoparticles. ChemPhysChem 12, 136139.
  • 33
    Pocoví-Martínez, S., L. Francés-Soriano, E. Zaballos-García, J. C. Scaiano, M. González-Béjar and J. Pérez-Prieto (2013) CO2 Switchable nanoparticles: Reversible water/organic-phase exchange of gold nanoparticles by gas bubbling. RSC Adv. 3, 48674871.
  • 34
    Agudelo, C. E., R. E. Galian and J. Pérez-Prieto (2012) Pyrene-functionalized nanoparticles: Two Independent sensors, the excimer and the monomer. Anal. Chem. 84, 80838087.
  • 35
    Aguilera-Sigalat, J., J. M. Casas-Solvas, M. C. Morant-Miñana, A. Vargas-Berenguel, R. E. Galian and J. Pérez-Prieto (2012) Quantum Dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing. Chem. Commun. 48, 25732575.
  • 36
    Wadhavane, P. D., R. E. Galian, M. A. Izquierdo, J. Aguilera-Sigalat, F. Galindo, L. Schmidt, M. I. Burguete, J. Pérez-Prieto and S. V. Luis (2012) Photoluminescence enhancement of CdSe quantum dots: A case of organogel-nanoparticle symbiosis. J. Am. Chem. Soc. 134, 2055420563.
  • 37
    Carrillo-Carrión, C., S. Cárdenas, B. M. Simonet and M. Valcárcel (2009) Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. Anal. Chem. 81, 47304733.
  • 38
    Delgado-Pérez, T., L. M. Bouchet, M. de la Guardia, R. E. Galian and J. Pérez-Prieto (2013) Sensing chiral drugs using CdSe/ZnS nanoparticles capped with N-acetyl-L-cysteine methyl ester. Chem. Eur. J. (in press). DOI:10.1002/chem.201300875.