SEARCH

SEARCH BY CITATION

References

  • 1
    Cogdell, R. J., N. W. Isaacs, T. D. Howard, K. McLuskey, N. J. Fraser and S. M. Prince (1999) How photosynthetic bacteria harvest solar energy. J. Bacteriol. 181, 38693879.
  • 2
    Gupta, R. S. (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth. Res. 76, 173183.
  • 3
    Olson, J. M. and R. E. Blankenship (2004) Thinking about the evolution of photosynthesis. Photosynth. Res. 80, 373386.
  • 4
    Larimer, F. W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. Torres y Torres, C. Peres, F. H. Harrison, J. Gibson and C. S. Harwood (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22, 5561.
  • 5
    Jones, M. R. (2009) The petite purple photosynthetic powerpack. Biochem. Soc. Trans. 37, 400407.
  • 6
    Ritchie, R. J. and J. W. Runcie (2013) Measurement of the photosynthetic electron transport rate in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) salina using PAM fluorometry. Photochem. Photobiol. 89, 370383.
  • 7
    Falkowski, P. G. and J. A. Raven (2007) Aquatic Photosynthesis, 2nd edn. Princeton University Press, Princeton, NJ.
  • 8
    Scheer, H. (Ed.) (1991) Chlorophylls. CRC Press, Boca Raton, Ann Arbor, Boston, London.
  • 9
    Schreiber, U., W. Bilger and C. Neubauer (1995a) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis (Edited by E. D. Schulze and M. M. Caldwell), pp 4970. Ecological Studies, 100, Springer, Berlin.
  • 10
    Schreiber, U., T. Endo, H.-L. Mi and K. Asada (1995b) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol. 36, 873882.
  • 11
    White, A. J. and C. Critchley (1999) Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res. 59, 6372.
  • 12
    Gloag, R. S., R. J. Ritchie, M. Chen, A. W. D. Larkum and R. G. Quinnell (2007) Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll d-containing oxyphotobacterium Acaryochloris marina Miyashita. Biochim. Biophys. Acta-Bioenerg. 1767, 127135.
  • 13
    Ritchie, R. J. (2008) Fitting light saturation curves measured using PAM fluorometry. Photosynth. Res. 96, 201215.
  • 14
    Ritchie, R. J. and A. W. D. Larkum (2012) Modelling photosynthesis in shallow algal production ponds. Photosynthetica 50, 481500.
  • 15
    van Niel, C. B. (1944) The culture, general physiology, morphology and classification of the non-sulphur purple and brown bacteria. Bacteriol. Rev. 8, 1118.
  • 16
    van Niel, C. B. (1971) Techniques for the enrichment, isolation and maintenance of the photosynthetic bacteria. Method. Enzymol. 23, 328.
  • 17
    Clayton, R. K. (1966a) Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem. Photobiol. 5, 669677.
  • 18
    Clayton, R. K. (1966b) Fluorescence from major and minor bacteriochlorophyll components in vivo. Photochem. Photobiol. 5, 679688.
  • 19
    Sojka, G. A., H. H. Freeze and H. Gest (1970) Quantitative estimation of bacteriochlorophyll in situ. Arch. Biochem. Biophys. 136, 578580.
  • 20
    Hellingwerf, K. J., W. de Vrij and W. N. Konings (1982) Wavelength dependence of energy transduction in Rhodopseudomonas sphaeroides: Action spectrum of growth. J. Bacteriol. 151, 534541.
  • 21
    Frigaard, N.-U., K. L. Larsen and R. P. Cox (1996) Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiol. Ecol. 20, 6977.
  • 22
    Neutzling, O., J. F. Imhoff and H. G. Trüper (1984) Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulphur compounds. Arch. Microbiol. 137, 256261.
  • 23
    Nakada, E., Y. Asada, T. Arai and J. Miyake (1995) Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J. Ferment. Bioeng. 80, 5357.
  • 24
    Oda, Y., F. W. Larimer, P. S. G. Chain, S. Malfatti, M. V. Shin, L. M. Vergez, L. Hauser, M. L. Land, S. Braatsch, J. T. Beatty, D. A. Pelletier, A. L. Schaefer and C. S. Harwood (2008) Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc. Natl Acad. Sci. USA 105, 1854318548.
  • 25
    Schott, J., B. M. Griffin and B. Schink (2010) Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. and Rhodopseudomonas sp. strain LQ17. Microbiology 156, 24282437.
  • 26
    Clayton, R. K. (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim. Biophys. Acta 75, 312323.
  • 27
    Clayton, R. K. and B. J. Clayton (1981) B850 pigment-protein complex of Rhodopseudomonas sphaeroides: Extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll. Proc. Natl Acad. Sci. USA 78, 55835587.
  • 28
    Feick, R., R. V. van Grondelle, C. P. Rijgersberg and G. Drews (1980) Fluorescence emission by wild-type and mutant-strains of Rhodopseudomonas capsulata. Biochim. Biophys. Acta 593, 241253.
  • 29
    Mangels, L. A., J. L. Favinger, M. T. Madigan and H. Gest (1986) Isolation and characterization of the N2-fixing marine photosynthetic bacterium Rhodopseudomonas marina, variety agilis. FEMS Microbiol. Lett. 36, 99104.
  • 30
    Miyake, J., T. Wakayama, J. Schnackenberg, T. Arai and Y. Asada (1999) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J. Biosci. Bioeng. 88, 659663.
  • 31
    Kocsis, P., E. Asztalos, Z. Gingl and P. Maróti (2010) Kinetic bacteriochlorophyll fluorometer. Photosynth. Res. 105, 7382.
  • 32
    Kühl, M. and T. Fenchel (2000) Bio-optical characteristics and the vertical distribution of photosynthetic pigments and photosynthesis in an artificial cyanobacterial mat. Microbial Ecol. 4, 94103.
  • 33
    Blankenship, R. E., D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince and R. T. Sayre (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805809.
  • 34
    Ritchie, R. J. (2010) Modelling photosynthetically active radiation and maximum potential gross photosynthesis. Photosynthetica 48, 596609.
  • 35
    Ritchie, R. J. and S. Bunthawin (2010a) The use of PAM (pulse amplitude modulation) fluorometry to measure photosynthesis in a CAM Orchid, Dendrobium spp. (D. cv. Viravuth Pink). Int. J. Plant Sci. 171, 575585.
  • 36
    Ritchie, R. J. and S. Bunthawin (2010b) The use of PAM (pulse amplitude modulation) fluorometry to measure photosynthesis in pineapple (Ananas comosus [L.] Merr). Trop. Plant Biol. 3, 193203.
  • 37
    Ritchie, R. J. (2012) Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) using PAM fluorometry. Int. J. Plant Sci. 173, 124136.
  • 38
    van Kooten, O. and J. F. H. Snel (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25, 147150.
  • 39
    Krause, G. H. and E. Weis (1991) Chlorophyll fluorescence and photosynthesis: The basics. Ann. Rev. Plant Physiol. 42, 313349.
  • 40
    Hohmann-Marriott, M. F. and R. E. Blankenship (2007) Variable fluorescence in green sulfur bacteria. Biochim. Biophys. Acta 1767, 106113.
  • 41
    Huang, J. J., E. K. Heiniger, J. B. McKinlay and C. S. Harwood (2010) Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl. Environ. Microbiol. 76, 77177722.
  • 42
    Bina, D., R. Litvin and F. Vacha (2009) Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth. Res. 99, 115125.
  • 43
    McKinlay, J. B. and C. S. Harwood (2010) Photobiological production of hydrogen gas as a biofuel. Curr. Opin. Biotechnol. 21, 18.
  • 44
    Hillmer, P. and H. Gest (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J. Bacteriol. 129, 724731.
  • 45
    Oh, Y.-K., E.-H. Seola, M.-S. Kim and S. Park (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris. Int. J. Hydrogen Energy 29, 11151121.
  • 46
    Suwansaard, M., W. Choorit, J. H. Zeilstra-Ryalls and P. Prasertsan (2009) Isolation of anoxygenic photosynthetic bacteria from Songkhla Lake for use in a two-staged biohydrogen production process from palm oil mill effluent. Int. J. Hydrogen Energy 34, 75237529.
  • 47
    Suwansaard, M., W. Choorit, J. H. Zeilstra-Ryalls and P. Prasertsan (2010) Phototrophic H2 production by a newly isolated strain of Rhodopseudomonas palustris. Biotechnol. Lett. 32, 16671671.
  • 48
    Adessi, A., G. Torzillo, E. Baccetti and R. De Philippis (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int. J. Hydrogen Energy 37, 88408849.
  • 49
    Allen, M. M.. (1973) Methods for cyanophyceae. In Handbook of Phycological Methods: Culture Methods and Growth Measurements (Edited by J. R. Stein), pp 127138. Cambridge University Press, Cambridge, UK
  • 50
    McLachlan, J.. (1973) Growth media—marine. In Handbook of Phycological Methods: Culture Methods and Growth Measurements (Edited by J. R. Stein), pp 2551. Cambridge University Press, Cambridge, UK
  • 51
    Kim, M.-K. and C. S. Harwood (1991) Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbio. Lett. 83, 199203.
  • 52
    Ritchie, R. J. and J. Gibson (1987) Permeability of ammonia and amines in Rhodobacter sphaeroides and Bacillus firmus. Arch. Biochem. Biophys. 258, 332341.
  • 53
    Duxbury, Z., M. Schliep, R. J. Ritchie, A. W. D. Larkum and M. Chen (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth. Res. 101, 6975.
  • 54
    Siefert, E., R. L. Irgens and N. Pfennig (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl. Environ. Microbiol. 35, 3841.
  • 55
    Xing, D., Y. Zhou, S. Cheng, J. M. Regan and B. E. Logan (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42, 41464151.
  • 56
    Gosse, J. L., B. J. Engel, J. C.-H. Hui, C. S. Harwood and M. C. Flickinger (2010) Progress toward a biomimetic leaf: 4000 h of hydrogen production by coating-stabilized non-growing photosynthetic Rhodopseudomonas palustris. Biotechnol. Progr. 26, 907918.
  • 57
    Buiteveld, H., J. M. H. Hakvoort and M. Donze (1994) The optical properties of pure water. In SPIE Proceedings on Ocean Optics XII, Vol. 2258 (Edited by J. S. Jaffe), pp 174183. The Society of Photo-Optical Instrumentation Engineers, Bellingham, WA.
  • 58
    Sullivan, S. A. (1963) Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum. J. Opt. Soc. Am. 53, 962968.
  • 59
    Irvine, W. M. and J. B. Pollack (1968) Infrared optical properties of water and ice spheres. Icarus 8, 324360.
  • 60
    Hale, G. M. and M. R. Querry (1973) Optical constants of water in the 200 nm to 20 mm wavelength region. Appl. Opt. 12, 555563.
  • 61
    Palmer, K. F. and D. Williams (1974) Optical properties of water in the near Infrared. J. Opt. Soc. Am. 64, 11071110.
  • 62
    Smith, R. C. and K. S. Baker (1981) Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20, 177184.
  • 63
    Pope, R. M. and E. S. Fry (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 87108723.
  • 64
    Koblízek, M., J. D. Shih, S. I. Breitbart, E. C. Ratcliffe, Z. S. Kolber, C. N. Hunter and R. A. Neiderman (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim. Biophys. Acta 1706, 220231.
  • 65
    Takahashi, M. and S. Ichimura (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol. Oceanogr. 15, 929944.
  • 66
    Díez, B., K. Bauer and B. Bergman (2007) Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): Diversity and diazotrophy. Appl. Environ. Microb. 73, 36563668.
  • 67
    Hubas, C., B. Jesus, C. Passarelli and C. Jeanthon (2011) Tools providing new insight into coastal anoxygenic purple bacterial mats. Res. Microbiol. 162, 858868.
  • 68
    Kolber, Z. S., C. L. Van Dover, R. A. Niederman and P. G. Falkowski (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177179.
  • 69
    Vopel, K. and I. Hawes (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol. Oceanogr. 51, 18011812.
  • 70
    Anderson, D. T., D. Y. Sumner, I. Hawes, J. Webster-Brown and C. P. McKay (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280293.
  • 71
    Imhoff, J. F. (1983) Rhodopseudomonas marina sp nov., a new marine phototrophic purple bacterium. Syst. Appl. Microbiol. 4, 512521.
  • 72
    Steele, J. H. (1962) Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7, 137150.
  • 73
    Grobbelaar, J. U. (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: What do the organisms tell us? J. Appl. Phycol. 19, 591598.
  • 74
    Grobbelaar, J. U., C. J. Soeder and E. Stengel (1990) Modelling Algal productivity in large outdoor cultures and waste treatment systems. Biomass 21, 297314.
  • 75
    Carlozzi, P., B. Pushparaj, A. Degl'Innocenti and A. Capperucci (2006) Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Appl. Microbiol. Biotechnol. 73, 789795.
  • 76
    Carlozzi, P., C. Pintucci, R. Piccardi, A. Buccioni, S. Minieri and M. Lambardi (2010) Greenenergy from Rhodopseudomonas palustris grown at low to high irradiance levels, under fed-batch operational conditions. Biotechnol. Lett. 32, 477481.
  • 77
    Schreiber, U., R. Gademann, P. Bird, P. Ralph, A. W. D. Larkum and M. Kühl (2002) Apparent light requirement for activation of photosynthesis upon rehydration of desiccated beachrock microbial mats. J. Phycol. 38, 125134.
  • 78
    Beatty, J. T., J. Overmann, M. T. Lince, A. K. Manske, A. S. Lang, R. E. Blankenship, C. L. van Dover, T. A. Martinson and F. G. Plumley (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl Acad. Sci. USA 102, 93069310.
  • 79
    Kramer, D. M., A. Kanazawa and D. Fleischman (1997) Oxygen dependence of photosynthetic electron transport in a bacteriochlorophyll-containing rhizobium. FEBS Lett. 417, 275278.
  • 80
    Giraud, E. and D. Fleischman (2004) Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosyth. Res. 82, 115130.
  • 81
    Lang, F. L. and D. Oesterhelt (1989) Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis. J. Bacteriol. 171, 28272834.
  • 82
    Imhoff, J. F. and A. Hiraishi (2005) Aerobic bacteria containing bacteriochlorophyll and belonging to the Alphproteobacteria. In Bergey's Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Parts A–C (Edited by G. M Garrity, D. J. Brenner, N. R. Kreig and J. R. Staley), pp 133136. Springer-Verlag, New York.
  • 83
    Singh, S. P. and S. C. Srivastava (1991) Isolation of non-sulphur photosynthetic bacterial strains efficient in hydrogen production at elevated temperatures. Int. J. Hydrogen Energy 16, 403405.
  • 84
    Chen, C.-Y., L. W-B, W. J-F and J.-S. Chang (2007) Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int. J. Hydrogen Energy 32, 940949.
  • 85
    Merugu, R., M. P. Pratap Rudra, A. Sridhar Rao, D. Ramesh, B. Nageshwari, K. Rajyalaxmi, S. Girisham and S. M. Reddy (2011) Influence of different cultural conditions on photoproduction of hydrogen by Rhodopseudomonas palustris KU003. ISRN Renewable Energy 2011, 328984. (DOI: 10.502/2011/328984)
  • 86
    Fernández, F. G. A., F. G. Camcho, J. A. S. Pérez, J. M. F. Sevilla and E. M. Grima (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioeng. 58, 605616.
  • 87
    Kim, J. K. and B.-K. Lee (2000) Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aquacult. Eng. 23, 281293.
  • 88
    Kim, M. K., K.-M. Choi, C.-R. Yin, K.-Y. Lee, W.-T. Im, J. H. Lim and S.-T. Lee (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol. Lett. 26, 819822.
  • 89
    Glaeser, J. and G. Klug (2005) Photooxidative stress in Rhodobacter sphaeroides: Protective role of carotenoids and expression of selected genes. Microbiology 151, 19271938.
  • 90
    Genty, B., J. M. Briantais and N. R. Baker (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 8792.
  • 91
    SMARTS (2011) Simple Model of Atmospheric Radiative Transfer of Sunshine (SMARTS). Available at: http://www.nrel.gov/rredc/smarts/. Accessed on 12 August 2011.
  • 92
    Lorrain, P., D. R. Corson and F. Lorrain (1988) Electromagnetic Fields and Waves, pp. 557561. Freeman Publishers, New York.