• 1
    Harvey, E. N. (1952) Bioluminescence. Academic Press, New York, NY.
  • 2
    Shimomura, O. (2006) Bioluminescence: Chemical Principles and Methods. World Scientific Publishing Co. Pte. Lt, Singapore.
  • 3
    Waldenmaier, H. E., A. G. Oliveira and C. V. Stevani (2012) Thoughts on the diversity of convergent evolution of bioluminescence on earth. Int. J. Astrobiol. 11, 335343.
  • 4
    Oliveira, A. G., D. E. Desjardin, B. A. Perry and C. V. Stevani (2012) Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem. Photobiol. Sci. 11, 848852.
  • 5
    Desjardin, D. E., A. G. Oliveira and C. V. Stevani (2008) Fungi bioluminescence revisited. Photochem. Photobiol. Sci. 7, 170182.
  • 6
    Deheyn, D. D. and M. I. Latz (2007) Bioluminescence characteristics of a tropical terrestrial fungus (Basidiomycetes). Luminescence 22, 462467.
  • 7
    Mori, K., S. Kojima, S. Maki, T. Hirano and H. Niwa (2011) Bioluminescence characteristics of the fruiting body of Mycena chlorophos. Luminescence 26, 604610.
  • 8
    Oliveira, A. G., R. P. Carvalho, H. E. Waldenmaier and C. V. Stevani (2013) Bioluminescência de fungos: distribuição, função e mecanismo de emissão de luz. Quím. Nova 36, 314319.
  • 9
    Hastings, J. W. (2004) The Desk Encyclopedia of Microbiology. Elsevier Academic Press, San Diego, CA.
  • 10
    Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziegenhagen, M. Wojtaś-Wasilewska, N.-S. Cho, M. Hofrichter and J. Rogalski (1999) Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27, 175185.
  • 11
    Capelari, M., D. E. Desjardin, B. A. Perry, T. Asai and C. V. Stevani (2011) Neonothopanus gardneri: A new combination for a bioluminescent agaric from Brazil. Mycologia 6, 14331440.
  • 12
    Dubois, R. (1885) Note sur la physiologic des pyrophores. C. R. Séanc. Soc. Biol. Fr. 37, 559562.
  • 13
    Dubois, R. (1887) Note sur la fonction photogénique chez le Pholas dactylus. C. R. Séanc. Soc. Biol. Fr. 39, 3.
  • 14
    Campbell, A. K. (1988) Chemiluminescence: Principles and Applications in Biology and Medicine. VCH, Chichester.
  • 15
    Wilson, T. and J. W. Hastings (1998) Bioluminescence. Ann. Rev. Cell Biol. 14, 197230.
  • 16
    Halliwell, B. and J. M. C. Gutterridge (2007) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.
  • 17
    Airth, R. L. and W. D. McElroy (1959) Light emission from extract of luminous fungi. J. Bacteriol. 77, 249250.
  • 18
    Oliveira, A. G. and C. V. Stevani (2009) The enzymatic nature of fungal bioluminescence. Photochem. Photobiol. Sci. 8, 14161421.
  • 19
    Airth, R. L. and G. E. Foerster (1962) The isolation of catalytic components required for cell-free fungal bioluminescence. Arch. Biochem. Biophys. 97, 567573.
  • 20
    Airth, R. L., G. E. Foerster and Q. P. Behrens (1966) The luminous fungi. In Bioluminescence in Progress. (Edited by F. H. Johnson and Y. Haneda), pp. 203233. Princeton University Press, NJ.
  • 21
    Sivinski, J. (1981) Arthropods attracted to luminous fungi. Psyche 88, 383390.
  • 22
    Oliveira, A. G., R. P. Carvalho and C. V. Stevani (2012) On the purification of the fungal luciferin. Luminescence 27, 150.
  • 23
    Oliveira, A. G., R. P. Carvalho, H. E. Waldenmaier, V. R. Viviani and C. V. Stevani (2012) On the purification of the NAD(P)H-dependent reductase involved in fungal bioluminescence. Luminescence 27, 151.
  • 24
    Wawrzyn, G. T., M. B. Quin, S. Choudhary, F. Lopez-Gallego and C. Schmidt-Dannert (2012) Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem. Biol. 19, 772783.
  • 25
    Airth, R. L. and G. E. Foerster (1964) Enzymes associated with bioluminescence in Panus stypticus luminescens and Panus stypticus nonluminescens. J. Bacteriol. 88, 13721379.
  • 26
    Jablonski, E. and M. Deluca (1977) Purification and properties of the NADPH specific FMN oxidoreductases from Beneckea harveyi. Biochemistry 16, 29322936.
  • 27
    Hawksworth, D. L. (2012) Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers. Conserv. 21, 24252433.
  • 28
    Gadd, G. M. (1993) Interactions of fungi with toxic metals. New Phytol. 124, 2560.
  • 29
    Kabir, Z., I. P. O'Halloran and C. Hamel (1997) Overwinter survival of arbuscular mycorrhizal hyphae is favored by attachment to roots but diminished by disturbance. Mycorrhiza 7, 197200.
  • 30
    Wessels, J. G. H. (1992) Gene expression during fruiting in Schizophyllum commune. Mycol. Res. 96, 609620.
  • 31
    Griffin, D. H. (1994) Fungal Physiology. Wiley Science, New York, NY.
  • 32
    Mendes, L. F. and C. V. Stevani (2010) Evaluation of metal toxicity by a modified method based on the fungus Gerronema viridilucens bioluminescence in agar medium. Environ. Toxicol. Chem. 29, 320326.
  • 33
    Hartley, J., J. G. Cairney and A. Meharg (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189, 303319.
  • 34
    Lasat, M. M. (2002) Phytoextraction of toxic metals. J. Environ. Qual. 31, 109120.
  • 35
    Meharg, A. A. (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol. Res. 107, 12531265.
  • 36
    Vasconcellos, P. C., D. Z. Souza, O. Sanchez-Ccoyllo, J. O. V. Bustillos, H. Lee, F. C. Santos, K. H. Nascimento, M. P. Araújo, K. Saarnio, K. Teinilä and R. Hillamo (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo. Brazil. Sci. Total Environ. 408, 58365844.
  • 37
    Anahid, S., S. Yachmaei and Z. Ghobadinejad (2011) Heavy metal tolerance of fungi. Sci. Iran 18, 508508.
  • 38
    Babich, H., C. Gamba-Vitalo and G. Stotzky (1982) Comparative toxicity of nickel to mycelial proliferation and spore formation of selected fungi. Arch. Environm. Contam. Toxicol. 11, 465468.
  • 39
    Baldrian, P. (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb. Techn. 32, 7891.
  • 40
    Cairney, J. W. G. and A. A. Meharg (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ. Pollut. 106, 169182.
  • 41
    Vydryakova, G. A., A. A. Gusev and S. E. Medvedeva (2011) Effect of organic and inorganic toxic compounds on luminescence of luminous fungi. Appl. Biochem. Michobiol. 47, 293297.
  • 42
    Kending, E. L., H. H. Le and S. M. Belcher (2010) Defining hormesis: Evaluation of a complex concentration response phenomenon. Int. J. Toxicol. 29, 235246.
  • 43
    Calabrese, E. J. (2008) Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 14511474.
  • 44
    Belgers, J. D. M., G. G. Aalderink and P. J. Van den Brink (2009) Effects of four fungicides on nine non-target submersed macrophytes. Ecotoxicol. Environ. Saf. 72, 579584.
  • 45
    Laiho, R. (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 38, 20112024.
  • 46
    Halliwell, B. and S. Chirico (1993) Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57, 715S752S.
  • 47
    Michałowicz, J. and W. Duda (2006) Phenols – Sources and toxicity. Polish J. Environ. Stud. 16, 347362.
  • 48
    Ying, W. (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Sign. 10, 179206.
  • 49
    Mendes, L. F., E. L. Bastos, D. E. Desjardin and C. V. Stevani (2008) Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens. FEMS Microbiol. Lett. 282, 132139.
  • 50
    Weitz, H. J., C. D. Campbell and K. Killham (2002) Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environ. Microbiol. 4, 422429.
  • 51
    Colpaert, J. V. and J. A. Assche (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Dunct. Ecol. 1, 415421.
  • 52
    Gadd, G. M., J. L. Mowll, C. White and P. J. Newby (1986) Methods for assessment of heavy metal toxicity towards fungi and yeasts. Toxic Assess. 1, 169185.
  • 53
    Horswell, J., H. Weitz, H. Percival and T. Speir (2006) Impact of heavy metal amended sewage sludge on forest soils as assessed by bacterial and fungal biosensors. Biol. Fert. Soils 42, 569576.
  • 54
    Paton, G. I., E. Viventsova, J. Kumpene, M. J. Wilson, H. J. Weitz and J. J. C. Dawson (2006) An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Sci. Total Environ. 355, 106117.
  • 55
    Ray, P., R. Tiwari, U. Reddy and A. Adholeya (2005) Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World J. Microb. Biot. 21, 309315.
  • 56
    Tam, P. C. F. (1995) Heavy metal tolerance by ectomycorrhial fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5, 181187.
  • 57
    Jones, D. and A. Muehlchen (1994) Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi. J. Environ. Sci. Health A 29, 949966.
  • 58
    Kramer, K. J. M., R. G. Jak, B. van Hattum, R. N. Hooftman and J. J. G. Zwolsman (2004) Copper toxicity in relation to surface water-dissolved organic matter: Biological effects to Daphnia magna. Environ. Toxicol. Chem. 23, 29712980.
  • 59
    McCloskey, J. T., M. C. Newman and S. B. Clark (1996) Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ. Toxicol. Chem. 15, 17301737.
  • 60
    Mendes, L. F., L. Zambotti-Villela, P. Colepicolo, E. Marinho-Soriano, C. V. Stevani and N. S. Yokoya (2013) Metal cation toxicity in the alga Gracilaria domingensis as evaluated by the daily growth rates in synthetic seawater. J. Appl. Phycol. doi:10.1007/s10811-013-0036-1.
  • 61
    Bermudes, D., V. L. Gerlach and K. H. Nealson (1990) Effects of culture conditions on mycelial growth and luminescence in Panellus stypticus. Mycologia 82, 295305.
  • 62
    Weitz, H. J., A. L. Ballard, C. D. Campbell and K. Killham (2001) The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiol. Lett. 202, 165170.
  • 63
    Bermudes, D., M. E. Boraas and K. H. Nealson (1991) In vitro antagonism of bioluminescent fungi by Trichoderma harzianum. Mycopathologica 115, 1929.
  • 64
    Gadd, G. M. (1983) The use of solid medium to study effects of cadmium, copper and zinc on yeasts and yeast-like fungi: Applicability and limitations. J. Appl. Microbiol. 30, 21552197.
  • 65
    Newman, M. C. and W. H. Clements (2008) Ecotoxicology: A Comprehensive Treatment. CRC Press, Boca Raton, FL.
  • 66
    Mendes, L. F., E. L. Bastos and C. V. Stevani (2010) Prediction of metal cation toxicity to the bioluminescent fungus Gerronema viridilucens. Environ. Toxicol. Chem. 29, 21772181.
  • 67
    Steinberg, S. M., E. J. Poziomek, W. H. Engelmann and K. R. Rogers (1995) A review of environmental applications of bioluminescence measurements. Chemosphere 30, 21552197.