SEARCH

SEARCH BY CITATION

References

  • 1
    Zhou, K., Y. Zhu, X. Yang, X. Jiang and C. Li (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35(2), 353359.
  • 2
    Perera, S. D., R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal and K. J. Balkus (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2(6), 949956.
  • 3
    Chen, C., W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. J. Feng (2010) Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction. ACS Nano 4(11), 64256432.
  • 4
    Morales-Torres, S., L. Pastrana-Martínez, J. Figueiredo, J. Faria and A. M. T. Silva (2012) Design of graphene-based TiO2 photocatalysts‚ – A review. Environ. Sci. Pollut. Res. 19(9), 36763687.
  • 5
    Tan, L.-L., S.-P. Chai and A. R. Mohamed (2012) Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 5(10), 18681882.
  • 6
    Bakardjieva, S., J. Subrt, V. Stengl, M. J. Dianez and M. J. Sayagues (2005) Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B 58 (3–4), 193202.
  • 7
    Stengl, V., F. Oplustil and T. Nemec (2012) In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations. Photochem. Photobiol. 88(2), 265276.
  • 8
    Stengl, V., T. Matys Grygar, J. Velicka, J. Henych and S. Bakardjieva. (2012) Impact of Ge4+ ion as structural dopant of Ti4+ in anatase: Crystallographic translation, photocatalytic behavior, and efficiency under UV and VIS irradiation. J. Nanomater. 252894. DOI:10.1155/2012/252894
  • 9
    Houskova, V., V. Stengl, S. Bakardjieva, N. Murafa and V. Tyrpekl (2009) Efficient gas phase photodecomposition of acetone by Ru-doped Titania. Appl. Catal. B 89(3–4), 613619.
  • 10
    Stengl, V., S. Bakardjieva and N. Murafa (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys. 114(1), 217226.
  • 11
    Stengl, V., V. Houskova, S. Bakardjieva and N. Murafa (2010) Photocatalytic activity of boron-modified titania under UV and visible-light illumination. Acs Appl. Mater. Inter. 2(2), 575580.
  • 12
    Stengl, V., S. Bakardjieva and J. Bludska (2011) Se and Te-modified titania for photocatalytic applications. J. Mater. Sci. 46(10), 35233536.
  • 13
    Štengl, V. (2012) Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem. Eur. J. 18(44), 1404714054.
  • 14
    JCPDS (2000) PDF 2 Database, Release 50, International Centre for Diffraction Data, Newtown Square, PA.
  • 15
    ICSD (2008) ICSD Database, FIZ, Karlsruhe, Germany.
  • 16
    Brunauer, S., P. H. Emmett and E. Teller (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309319.
  • 17
    Barrett, E. P., L. G. Joyner and P. P. Halenda (1951) The determination of pore volume and area distributions in porous substances. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373380.
  • 18
    Christy, A. A., O. M. Kvalheim and R. A. Velapoldi (1995) Quantitative-analysis in diffuse-reflectance spectrometry - a modified Kubelka-Munk equation. Vib. Spectrosc. 9(1), 1927.
  • 19
    Orel, Z. C., M. K. Gunde and B. Orel (1997) Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Prog. Org. Coat. 30(1–2), 5966.
  • 20
    Stengl, V., V. Houskova, S. Bakardjieva, N. Murafa and V. Havlin (2008) Havlin optically transparent titanium dioxide particles incorporated in poly(hydroxyethyl methacrylate) thin layers. J. Phys. Chem. C 112(50), 1997919985.
  • 21
    Lachheb, H., E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 39(1), 7590.
  • 22
    Stankovich, S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 15581565.
  • 23
    Aglietto, I. (2010) Advanced photocatalytic oxidation with graphene for wastewater treatment. ENT Mag. 03, 3335.
  • 24
    Reyes-Coronado, D., G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, Rd. Coss and G. Oskam (2008) Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 19(14), 145605.
  • 25
    Dreyer, D. R., S. Park, C. W. Bielawski and R. S. Ruoff (2010) The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228240.
  • 26
    Stengl, V., S. Bakardjieva, T. M. Grygar, J. Bludska and M. Kormunda (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem. Cent. J. 7(1), 112.
  • 27
    Zhang, Q., Y. He, X. Chen, D. Hu, L. Li, T. Yin and L. L. Ji (2011) Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin. Sci. Bull. 56(3), 331339.
  • 28
    Seredych, M. and T. J. Bandosz (2010) Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J. Phys. Chem. C 114(34), 1455214560.
  • 29
    Williams, G., B. Seger and P. V. Kamat (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 14871491.
  • 30
    Liu, J., H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater. 20(23), 41754181.
  • 31
    Lowell, S. and J. E. Shields (1998) Powder Surface Area and Porosity, pp. 1213. Chapman and Hall, London.
  • 32
    deBoer, J. A. (1958) The shape of capillaries In: The Structure and Properties of Porous Materials, (Edited by P. Eisenklam), pp. 6892. Butterworths, London.
  • 33
    Paredes, J. I., S. Villar-Rodil, A. Martínez-Alonso and J. M. D. Tascón (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19), 1056010564.
  • 34
    Weng, W. G., G. H. Chen, D. J. Wu, Z. Y. Lin and W. L. Yan (2003) Preparation and characterizations of nanoparticles from graphite via an electrochemically oxidizing method. Synth. Met. 139(2), 221225.
  • 35
    Nguyen, D. D., N. H. Tai, Y. L. Chueh, S. Y. Chen, Y. J. Chen and W. S. Kuo, T. W. Chou, C. S. Hsu and L. J. Chen (2011) Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films. Nanotechnology. 22(29), 295606.
  • 36
    Phillies, G. D. J. and H. E. Stanley (1976) Hydroxyl deformation frequencies as a probe of hydrogen-bonding in lasalocid-a (X-537a) and its sodium complex. J. Am. Chem. Soc. 98(13), 38923897.
  • 37
    Zhang, W., J. Cui, C.-a. Tao, Y. Wu, Z. Li, L. Ma, Y. Q. Wen and G. T. Li (2009) A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem. Int. Ed. 48(32), 58645868.
  • 38
    Lu, J., J.-x. Yang, J. Wang, A. Lim, S. Wang and K. P. Loh (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 23672375.
  • 39
    Reddy, K. M., S. V. Manorama and A. R. Reddy (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78(1), 239245.
  • 40
    Tauc, J., R. Grigorov and A. Vancu (1966) Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi A 15(2), 627637.
  • 41
    Konstantinou, I. K. and T. A. Albanis (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B 49(1), 114.
  • 42
    Stengl, V. and T. Matys Grygar (2011) The simplest way to iodine-doped anatase for photocatalysts activated by visible light. Int. J. Photoenergy. 685935. DOI:10.1155/2011/685935
  • 43
    Liang, Y., H. Wang, H. Sanchez Casalongue, Z. Chen and H. Dai (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3(10), 701705.
  • 44
    Pastrana-Martínez, L. M., S. Morales-Torres, V. Likodimos, J. L. Figueiredo, J. L. Faria, P. Falaras and A. M. T. Silva (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal. B. 123(0), 241256.
  • 45
    Nguyen-Phan, T.-D., V. H. Pham, E. W. Shin, H.-D. Pham, S. Kim, J. S. Chung, E. J. Kim and S. H. Hur (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 170(1), 226232.
  • 46
    Jiang, G., Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Q. Tang (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49(8), 26932701.