SEARCH

SEARCH BY CITATION

References

  • Antonsen F., Johnsson A. (1998) Effects of microgravity on the growth of Lepidium roots. Journal of Gravitational Physiology, 5, 1321.
  • Artemenko O.A. (2005) Expression of δ1- and δ3-cyclins in root meristem cells of Pisum sativum L. by clinorotation. Journal of Gravitational Physiology, 12, 201202.
  • Babbick M., Dijkstra C., Larkin O.J., Anthony P., Davey M.R., Power J.B., Lowe K.C., Cogoli-Greuter M., Hampp R. (2007) Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Advances in Space Research, 39, 11821189.
  • Baluska F., Hasenstein K.H. (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta, 203, 6978.
  • Baluska F., Barlow P.W., Kubica S. (1994) Importance of post-mitotic isodiametric growth (PIG) region for growth and development of roots. Plant and Soil, 167, 3141.
  • Baluska F., Volkmann D., Barlow P.W. (2001) A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. Journal of Plant Growth Regulation, 20, 170181.
  • Baluska F., Mancuso S., Volkmann D., Barlow P.W. (2010) Root apex transition zone: a signalling–response nexus in the root. Trends in Plant Science, 15, 403408.
  • Baranenko V.V. (2001) Pea chloroplasts under clinorotation: lipid peroxidation and superoxide dismutase activity. Advances in Space Research, 27, 973976.
  • Baranenko V.V. (2003) Reactive oxygen species production in pea plants under clinorotation. Dopovidi Nacionalnoi Akademii Nauk Ukraini, 9, 161165.
  • Barjaktarović Ž., Babbick M., Nordheim A., Lamkemeyer T., Magel E., Hamp R. (2009a) Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- and simulated microgravity. Microgravity Science and Technology, 21, 191196.
  • Barjaktarović Ž., Schütz W., Madlung J., Fladerer C., Nordheim A., Hampp R. (2009b) Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. Journal of Experimental Botany, 60, 779789.
  • Barlow P.W. (1992) A conceptual framework for investigating plant growth movements, with special reference to root gravitropism, utilizing a microgravity environment. Microgravity Quarterly, 2, 7787.
  • Beysens D., Carotenuto L., van Loon J.W.A., Zell M. (2011) Laboratory science with space data. Springer, Berlin, Germany, pp 215.
  • Bingham G.E., Levinskikh M.A., Sytchev V.N., Podolsky I.G. (2000) Effects of gravity on plant growth. Journal of Gravitational Physiology, 7, 58.
  • Blancaflor E.B., Sparks J.A., Nakashima J., Tang Y. (2012) Microgravity research on STS-131: transcript profiling of space-grown Arabidopsis seedlings uncover novel regulators of root development. ISLSWG Satellite Workshop to the Plant Biology Congress, p 24.
  • Bonnett H.T.J., Newcomb E.H. (1965) Polyribosomes and cisternal accumulations in root cells of radish. Journal of Cell Biology, 27, 423432.
  • Brown A.H., Chapman D.K. (1984) Circumnutation observed without a significant gravitational force in space flight. Science, 225, 230232.
  • Brykov V.O. (2011) Clinorotation affects the ultra-structure of pea root mitochondria. Microgravity Science and Technology, 23, 215219.
  • Brykov V.O., Shugaev A.G., Generozova I.P. (2012) Ultrastructure and metabolic activity of pea mitochondria under clinorotation. Cytology and Genetics, 46, 144149.
  • Claassen D.E., Spooner B.S. (1994) The impact of alterations in gravity on aspects of cell biology. International Review of Cytology, 156, 301373.
  • Clement J.Q., Wilson B.L. (1999) Global gene expression and the regulatory role of P53 in a simulated microgravity environment. Biorack on Spacehab, Biological Experiments on Three Shuttle-to-Mir Missions. ESA Publication Division, ESTEC, Noordwijk, the Netherlands, p 29.
  • Cock M.E., Croxdale J.L., Tibbitts T.W., Goins G., Brown C.S., Wheeler R.M. (1998) Development and growth of potato tubers in microgravity. Advances in Space Research, 21, 11031110.
  • Darbelley H., Driss-Ecole D., Perbal G. (1989) Elongation and mitotic activity of cortical cells in lentil roots grown in microgravity. Plant Physiology and Biochemistry, 27, 341347.
  • De Roeher A., Lanzon L., Vierling E. (1990) HSP70 expression during seed development. Journal of Cell Biochemistry, 14E, 298.
  • Di Laurencio L., Wysocka-Diller J., Malamy J.E., Pysh L., Helariutta Y., Freshour G., Hahn M.G., Feldmann K.A., Benfey P.N. (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 86, 423433.
  • Driss-Ecole D., Lefranc A., Perbal G. (2003) A polarized cell: the root statocyte. Physiologia Plantarum, 118, 305312.
  • Driss-Ecole D., Legue V., Carnero-Diaza E., Perbal G. (2008) Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the International Space Station. Physiologia Plantarum, 134, 191201.
  • Gamaley Y.V. (1990) The leaf phloem. Nauka, Leningrad, Russia. [In Russian].
  • Halstead T.W., Dutcher F.R. (1987) Plants in space. Annual Review of Plant Physiology, 38, 317345.
  • Hampp R., Hoffmann E., Schonherr K. (1997) Fusion and metabolism of plant cells as affected by microgravity. Planta, 203, 4253.
  • Hashimoto T. (2003) Dynamics and regulation of plant interphase microtubules: a comparative view. Current Opinion in Plant Biology, 6, 568576.
  • Haston E., Richardson J.E., Stevens P.F., Chase M.W., Harris D.J. (2009) The Linear Angiosperm Phylogeny Group (LAPG) III: a linear sequence of the families in APG III.b. Botanical Journal of the Linnean Society, 161, 128131.
  • Ishikawa H., Evans M.L. (1995) Specialized zone of development of roots. Plant Physiology, 109, 725727.
  • Jiang L., Rogers J.C. (2003) Sorting of lytic enzymes in the plant Golgi apparatus. Annual Plant Review, 9, 114140.
  • Jiao S.X., Hilaire E., Paulsen A.G., Guikema J.A. (2004) Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity. Physiologia Plantarum, 122, 281291.
  • Johnsson A., Karlsson C., Chapman D.K., Braseth J.D., Iversen T.H. (1996) Dynamics of root growth in microgravity. Journal of Biotechnology, 47, 155165.
  • Kalinina I. (2008) Microtubule spatial alterations in root cells of Brassica rapa under clinorotation. Cell Biology International, 32, 581583.
  • Kiss J.Z. (2000) Mechanisms of the early phases of plant gravitropism. Critical Reviews in Plant Science, 19, 551573.
  • Kiss J.Z., Edelmann R.E., Guisinger M.M., Katembe W.J., Wood P.C. (1999) Graviperception studies in Biorack with wild-type and starch-deficient mutants of Arabidopsis. Biorack on Spacehab, Biological Experiments on Three Shuttle-to-Mir Missions. ESA Publication Division, ESTEC, Noordwijk, the Netherlands, pp 205219.
  • Klymchuk D.O., Baranenko V.V., Vorobyova T.V., Dubovoy V.D. (2006) Fluidity of plasma membrane in pea seedling roots under clinorotation. Journal of Gravitational Physiology, 13, 123124.
  • Kochubey S.M., Adamchuk N.I., Kordyum E.L., Guikema J.A. (2004) Microgravity effects the photosynthetic apparatus of Brassica rapa L. Plant Biosystems, 138, 19.
  • Kordyum E.L. (1997) Plant cells in microgravity and under clinostating. International Review of Cytology, 171, 178.
  • Kordyum E.L., Chapman D.K. (2007) Plants in space. Akademperiodika, Kyiv, Ukraine, pp 215.
  • Kordyum E.L., Guikema J.A. (2001) An active role of the amyloplasts and nuclei of root statocytes in graviperception. Advances in Space Research, 27, 951956.
  • Kordyum E., Baranenko V., Nedukha E., Samoilov V. (1997) Development of potato minitubers in microgravity. Plant and Cell Physiology, 38, 11111117.
  • Kordyum E.L., Shevchenko G.V., Yemets A., Nyporko A., Blume Y. (2005) Application of GFP-technology for cytoskeleton visualization on board the International Space Station. Acta Astronautica, 56, 613621.
  • Kordyum E., Sobol M., Kalinina I., Bogatina N., Kondrachuk A. (2007) Cyclotron-based effects on plant gravitropism. Advances in Space Research, 39, 12101217.
  • Kordyum E.L., Shevchenko G.V., Kalinina I.M., Demkiv O.T., Khorkavtsiv Y.D. (2008a) The role of the cytoskeleton in plant cell gravisensitivity. In: Blume Y. B., Baird W. V., Yemets A. I., Breviario D. (Eds), The plant cytoskeleton: a key tool for agro biotechnology. Springer, Berlin, Germany, pp 173196.
  • Kordyum E.L., Sarnatska V.V., Talalaev A.S., Ovcharenko Y.V. (2008b) In vitro root development in Arabidopsis thaliana wild-type and scr mutants under clinorotation. Journal of Gravitational Physiology, 15, 165166.
  • Kozeko L.Y., Kordyum E.L. (2006) The stress protein level under clinorotation in context of the seedling developmental program and the stress response. Microgravity Science and Technology, 18, 254256.
  • Kozeko L.Y., Kordyum E.L. (2007) Heat shock proteins Hsp70 and Hsp90 in pea seedlings under clinorotation of different duration. Journal of Gravitational Physiology, 14, 115116.
  • Kozeko L.E., Shevchenko G.V., Artemenko O.A., Martyn G.G., Kordyum E.L. (2005) Actin organization and gene expression in Beta vulgaris seedlings under clinorotation. Journal of Gravitational Physiology, 12, 187188.
  • Kuang A., Popova A., McClure G., Musgrave E. (2005) Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. International Journal of Plant Science, 166, 8596.
  • Kuznetsov O.A., Hasenstein K.H. (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta, 198, 8794.
  • Laurinavichius R.S., Yaroschus A.V., Marchukajtis A. (1984) Metabolism of pea plants grown under space flight conditions. In: Dubinin N. P. (Ed.), Biologicheskii issledovaniya na orbitalnikh stanziyakh salyut. Nauka, Moscow, Russia, pp 96102.
  • Legue V., Cabane M., Ladouce N., Dauphin A., Grima-Pettenati J., Lapierre C. (2005) The impact of gravity on wood formation in Eucalyptus globulus: Experiences in simulated microgravity. 26th Annual International Gravitational Physiology Meeting, 26 June–1 July. Cologne, Germany. Abstracts: 108.
  • Liboff A.R. (1985) Geomagnetic cyclotron resonance in living cells. Journal of Plant Physiology, 13, 99102.
  • Manzano A.I., Matía I., González-Camacho F., Carnero-Díaz E., van Loon J.W.A., Dijkstra C., Larkin O., Anthony P., Davey M.R., Marco R., Medina F.J. (2009) Germination of Arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation. Microgravity Science and Technology, 21, 293297.
  • Masi M. (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proceedings of the National Academy of Sciences USA, 106, 40484053.
  • Matia I., Gonzallez-Camacho F., Marco R., Kiss J.Z., Gasset G., Medina F.J. (2005) Nucleolar structure and proliferation activity of Arabidopsis root cells from seedlings germinated on the International Space Station. Advances in Space Research, 36, 12441253.
  • Matia I., Gonzallez-Camacho F., Herranz R. (2010) Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of Plant Physiology, 167, 184193.
  • Matsushima R., Kondo M., Nishimura M., Hara-Nishimura I. (2003) A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER retention signal in Arabidopsis. The Plant Journal, 33, 493502.
  • Medina F.J., Harranz R. (2010) Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signaling and Behavior, 5, 176178.
  • Merkys A.I., Laurinavichius R.S. (1983) Complete cycle of individual development of Arabidopsis thaliana (L.) Heynh. plants on board the Salyut-7 orbital station. Doklady Akademii Nauk SSSR, 271, 509512.
  • Millar K.D.L., Johnson C.M., Edelmann R.E., Kiss J.Z. (2011) An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology, 11, 787797.
  • Musgrave M.E. (2007) Growing plants in space. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 19.
  • Musgrave M.E., Kuang A., Tuominen L.K., Levine L.H., Morrow R.C. (2005) Seed storage reserves and glucosinolates in Brassica rapa L grown on the International Space Station. Journal of the American Society for Horticultural Science, 130, 818856.
  • Musgrave M.E., Kuang A., Xiao Y., Stout S.C., Bringham G.E., Briarty L.G. (2000) Gravity independence of seed-to-seed cycling in Brassica rapa. Planta, 210, 400406.
  • Nedukha E.M. (1996) Effects of microgravity on the structure and function of plant cell walls. International Review of Cytology, 170, 3977.
  • Nedukha O., Kordyum E., Shnyukova E., Martyn G. (2004) A role of peroxidase in acceleration of aging of potato minitubers under influence of microgravity. Journal of Gravitational Physiology, 11, 211212.
  • Paul A.-L., Daugharty C.J., Bihn E.A., Chapman D.K., Norwood K.L., Ferl R.J. (2001) Transgenic expression patterns indicate that spaceflight effects stress signal perception and transduction in Arabidopsis. Plant Physiology, 126, 613621.
  • Paul A.-L., Popp M.P., Gurley W.B., Guy C., Norwood K.L., Ferl R.J. (2005) Arabidopsis gene expression patterns are altered during spaceflight. Advances in Space Research, 36, 11751181.
  • Paul A.-L., Manak M.S., Mayfield J.D., Reyes M.F., Gurley W.B., Ferl R.J. (2011) Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology, 11, 743758.
  • Paul A.-L., Amalfitano C.E., Ferl R.J. (2012a) Plant growth strategies are remodeled by spaceflight. Plant Biology, 12, 232255.
  • Paul A.-L., Zupanska A.K., Ostrow D.T., Zhang Y., Sun Y., Li J.-L., Shanker S., Farmerie W.G., Amalfitano C.E., Ferl R.J. (2012b) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology, 12, 4056.
  • Perada-Loth V., Gerard J., Eche B., Legue V. (2012) The modification in root statocyte polarity on calcium distribution: results from PolCa space experiment. ISLSWG Satellite Workshop to the Plant Biology Congress 01–03 August 2012: 17.
  • Perbal G. (2009) From ROOTS to GRAVI-1: twenty-five years for understanding how plants sense gravity. Microgravity Science and Technology, 21, 310.
  • Perbal G., Driss-Ecole D. (1994) Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML I mission of Spacelab. Physiologia Plantarum, 98, 313318.
  • Porterfield D.M., Matthews S.W., Daugherty C.J., Musgrave M.E. (1997) Spaceflight exposure effects on transcription, activity and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana. Plant Physiology, 113, 685693.
  • Porterfield D.M., Monje O., Stutte G.W., Musgrave M.E. (2000) Root zone hypoxic responses result from inhibition of gravity-dependent oxygen transport in microgravity. Gravitational Space Biology Bulletin, 14, 50.
  • Rasmussen O., Klimchuk D.A., Kordyum E.L., Danevich L.A., Tarnavskaya E.B., Lozovaya V.V., Tairbekov M.G., Baggerud C., Iversen T.-H. (1992) The effect of exposure to microgravity on the development and structural organization of plant protoplasts. Physiologia Plantarum, 84, 162170.
  • Romanchuk S.M. (2010) Ultrastructure of statocytes and cells of the distal elongation zone in Arabidopsis thaliana under clinorotation. Cytology and Genetics, 44, 38.
  • Roux S.J. (2012) Root waving and skewing – unexpectedly in microgravity. BMC Plant Biology, 12, 231.
  • Sack F.D. (1997) Plastids and gravitropic sensing. Planta, 203, 6368.
  • Shen-Miller J., Hinchman R.R. (1995) Nucleolar transformation in plants grown on clinostats. Protoplasma, 185, 194204.
  • Shevchenko G.V. (1999) Patterns of cortical microtubules formed in epidermis of Beta vulgaris L. roots under clinorotation. Advances in Space Research, 24, 739742.
  • Shevchenko G.V., Kalinina I.M., Kordyum E.L. (2007) Interaction between microtubules and microfilaments in the elongation zone in Arabidopsis root under clinorotation. Advances in Space Research, 39, 11711175.
  • Sievers A. (2000) From gravitational to space biology in Bonn. Newsletter ASGSB, 16, 1825.
  • Sievers A., Volkmann D., Heinovicz Z. (1991) Role of the cytoskeleton in gravity perception. In: Lloyd C. W. (Ed.), The cytoskeletal basis in plant growth and form. Academic Press, London, UK, pp 169182.
  • Slenzka K., Kordyum E. (1996) Gravity, cellular membranes and associated processes: an introduction. Advances in Space Research, 17, 141142.
  • Smith J.D., Todd P., Staehelin L.A. (1997) Modulation of statolith mass and grouping in white clover (Trifolium repens) grown in 1 g, microgravity and on the clinostat. The Plant Journal, 12, 13611373.
  • Sobol M.A., Gonzalez-Camacho F., Rodriguez-Vilarino V., Kordyum E.L., Medina F.J. (2005) Clinorotation influences rDNA and NopA100 localization in nucleoli. Advances in Space Research, 36, 12541262.
  • Sobol M., Gonzalez-Camacho F., Rodríguez-Vilariño V., Kordyum E., Medina F.J. (2006) Subnucleolar location of fibrillarin and NopA64 in Lepidium sativum root meristematic cells is changed in altered gravity. Protoplasma, 228, 209219.
  • Stout S.C., Porterfield D.M., Briarty L.G., Kuang A., Musgrave M.E. (2001) Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity. International Journal of Plant Science, 162, 249255.
  • Stutte G.W., Monje O., Goins G.D., Tripathy B.C. (2005) Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta, 223, 4656.
  • Stutte G.W., Monje O., Hatfield R.D., Paul A.L., Ferl R.J., Simone C.G. (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta, 224, 10381049.
  • Sychev V.N., Levinskikh M.A., Gostinsky S.A., Bingham G.E., Podolsky I.G. (2007) Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronautica, 60, 426432.
  • Tairbekov M.G. (2002) Molecular and cellular fundamentals of gravisensitivity. Nauka, Moscow, Russia, pp 104.
  • Talalaev A. (2005) Expression of small heat shock proteins in pea seedlings under gravity-altered conditions. Journal of Plant Physiology, 12, 203204.
  • Talalaiev A. (2006) Expression of messenger RNA of two cytosolic small heat shock proteins under clinorotation. Journal of Plant Physiology, 13, 115116.
  • Teale W.D., Ditengou F.A., Dovzhenko A.D., Li X., Molendijk A.M., Ruperti B., Paponov I., Palme K. (2008) Auxin as a model for the integration of hormonal signal processing and transduction. Molecular Plant, 1, 229237.
  • Tripathy B.C., Brown C.S., Levine H.G., Krikorian A.D. (1996) Growth and photosynthetic responses of wheat plants grown in space. Plant Physiology, 110, 801806.
  • Verbellen J.-P., Le J., Vissenberg K., de Cnodder T., Vandenbussche F., Sugimoto K., van der Straeten D. (2008) Microtubules and the control of cell elongation in Arabidopsis roots. In: Blume Y. B., Baird W. V., Yemets A. I., Breviario D. (Eds), The plant cytoskeleton: a key tool for agro–biotechnology. Springer, Berlin, Germany, pp 7390.
  • Volkmann D., Baluška D. (2007) Physiological Responses of Higher Plants. In: Brinckmann E. (Ed.), Biology in space and life on earth. Effects of Space flight on Biological Systems, Wiley, Weinheim, Germany, pp 53141.
  • Volkmann D., Behrens H.M., Sievers A. (1986) Development and gravity sensing of cress roots under microgravity. Naturwissenschaften, 73, 438441.
  • Volkmann D., Pilger M., Schinke S., Hübel F., Schnabl H. (1999) Investigations of cress statolith starch in microgravity. Biorack on Spacehab, Biological Experiments on Three Shuttle-to-Mir Missions. ESA Publication Division, ESTEC, Noordwijk, the Netherlands, pp 231235.
  • Wang I.I., Zheng H.Q., Wet S., Zeng R., Xia Q.X. (2006) A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation. Journal of Experimental Botany, 57, 827835.
  • Weise S.E., Kuznetsov O.A., Hasenstein K.H., Kiss J.Z. (2000) Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant and Cell Physiology, 41, 702709.
  • Yano S., Kasahara H., Masuda D., Tanigaki F., Shimazu T., Suzuki H., Karahara I., Soga K., Hoson T., Tayama I., Tsuchiya Y., Kamisaka S. (2012) Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station. Advances in Space Research, 51, 780788.