• Bichler, M., P. Shabalin, A. Pikovsky. 2009. A computational analysis of linear price iterative combinatorial auction formats. Inf. Syst. Res. 20(1): 3359.
  • Blumrosen, L., N. Nisan. 2007. Combinatorial Auctions. N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani, eds. Algorithmic Game Theory, Cambridge University Press, New York, 267300.
  • Cho, S. H., C. S. Tang. 2011. Capacity allocation under retail competition: Uniform and competitive allocations. Available at or (accessed date October 2, 2011).
  • Cramton, P., Y. Shoham, R. Steinberg. 2007. An overview of combinatorial auctions. ACM SIGecom Exch. 7(1): 314.
  • de Vries, S. R., V. Vohra. 2003. Combinatorial auctions: A survey. INFORMS J. Comput. 15: 284309.
  • Demange, G., D. Gale, M. Sotomayor. 1986. Multi-item auctions. J. Polit. Econ. 94(4): 863872.
  • Dewan, P., S. Joshi. 2002. Auction-based distributed scheduling in a dynamic job shop environment. Int. J. Prod. Res. 40(5): 11731191.
  • Dobzinski, S., N. Nisan. 2007. Mechanisms for multi-unit auctions. D. Parkes, M. Tennenholtz, eds. EC'07: Proceedings of the 8th ACM Conference on Electronic Commerce, ACM, San Diego, California, USA, 346–351.
  • Fleischmann, M., J. M. Hall, D. F. Pyke. 2004. Smart pricing. MIT Sloan Manage. Rev. 45(2): 913.
  • Go2paper, Inc. 2012. Paper Marketplace Solutions 2012. Available at (accessed date April 3, 2012).
  • Hall, N. G., Z. Liu. 2008a. Cooperative and noncooperative games for capacity planning and scheduling. Z.-L. Chen, S. Raghavan, eds. Tutorials in Operations Research, INFORMS, Hanover, MD, 108129.
  • Hall, N. G., Z. Liu. 2008b. Auctions for competitive capacity allocation and scheduling. Working paper, Fisher College of Business, The Ohio State University, Columbus.
  • Hall, N. G., Z. Liu. 2010. Capacity allocation and scheduling in supply chains. Oper. Res. 58(6): 17111725.
  • Hall, N. G., Z. Liu. 2011. On auction protocols for decentralized scheduling. Games Econ. Behav. 72: 583585.
  • Hylland, A., R. Zeckhauser. 1979. The efficient allocation of individuals to positions. J. Polit. Econ. 87(2): 293314.
  • IBM ILOG. Cplex Optimization Studio, 2012. Available at (accessed date April 3, 2012).
  • Kutanoğlu E., S. D. Wu. 1999. On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Trans. 31: 813826.
  • Kwasnica, A. M., J. O. Ledyard, D. Porter, C. DeMartini. 2005. A new and improved design for multiobject iterative auctions. Manage. Sci. 51(3): 419434.
  • Lawler, E. L. 1977. A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness. Ann. Discrete. Math. 1: 331342.
  • Liu, Z. 2007. Capacity Allocation and Rescheduling in Supply Chains. PhD thesis, Ohio State University.
  • McAfee, R. P., J. McMillan. 1987. Auctions and bidding. J. Econ. Lit., 25(2): 699738.
  • Milgrom, P. R., R. J. Weber. 1982. A theory of auctions and competitive bidding. Econometrica 50(5): 10891122.
  • Pikovsky, A., M. Bichler. 2005. Information feedback in iterative combinatorial auctions. O. K. Ferstl, E. J. Sinz, S. Eckert, T. Isselhorst, eds. Wirtschaftsinformatik. Physica-Verlag HD, Germany, 329348.
  • Rassenti, S. J., V. L. Smith, R. L. Bulfin. 1982. A combinatorial auction mechanism for airport time slot allocation. Bell J. Econ. 13(2): 402417.
  • Reeves, D. M., M. P. Wellman, J. K. MacKie-Mason, A. V. Osepayshvili. 2005. Exploring bidding strategies for market-based scheduling. Decis. Sup. Sys. 39(1): 6785.
  • Stole, L. A. 2007. Price discrimination and competition. M. Armstrong, R. Porter, eds. Handbook of Industrial Organization. North-Holland, Amsterdam, 22232299.
  • Wellman, M., W. E. Walsh, P. R. Wurman, J. Mackie-Mason. 2001. Auction protocols for decentralized scheduling. Games Econ. Behav. 35(1-2): 271303.