SEARCH

SEARCH BY CITATION

References

  • Agrawal, N., S. Smith. 1996. Estimating negative binomial demand for retail inventory management with unobserveable lost sales. Naval Res. Logist. 43(6): 839861.
  • Altug, M. S., A. Muharremoglu 2011. Inventory management with advance supply information. Int. J. Prod. Econ. 129(2): 302313.
  • Anonymous. 2003. 2003 national supermarket shrink survey. The National Supermarket Research Group.http://www.retailcontrol.com (accessed date April 20, 2011).
  • Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature on the ground. Philos. Magazine 41: 237276.
  • Axtman, B. 2006. Ripe opportunities. Prog. Grocer 85(4): 7680.
  • Boyer, M. 2006. Lost in skus. Prog. Grocer 93–94: 118121.
  • Bremner, A. 1984. Quality—An attitude of mind, In Australian Fishing Industry Today and Tomorrow. The Australian Maritime College, Launceston, Tasmania, Australia, 10–12 July 1984, pp. 244269.
  • Chang, R. 1981. Physical Chemistry with Applications to Biological Systems. Macmillan Publishing Co., New York.
  • Chen, J.-M., T.-H. Chen. 2005. Effects of joint replenishment and channel coordination for managing multiple deteriorating products in a supply chain. J. Oper. Res. Soc. 56: 12241234.
  • Choi, H. P., J. D. Blocher, S. Gavirneni. 2008. Value of sharing production yield information in a serial supply chain. Prod. Oper. Manag. 17(6): 614625.
  • Dada, A., F. Thiesse. 2008. Sensor applications in the supply chain: The example of quality-based issuing of perishables. C. Floerkemeier, M. Langheinrich, E. Fleish, F. Mattern, S. Sarma, eds The Internet of Things, Vol.4952. Springer Berlin, Zurich.
  • Doyle, J. P. 1995. Seafood shelf life as a function of temperature. Alaska Sea Grant Marine Advisory Program 30: 15.
  • Ferguson, M., M. Ketzenberg. 2006. Sharing information to improve retail product freshness of perishables. Prod. Oper. Manag. 15(1): 5773.
  • Ferrer, G., M. Ketzenberg. 2004. Value of information in remanufacturing complex products. IIE Trans. 36(3): 265278.
  • Fries, B. 1975. Optimal order policy for a perishable commodity with inventory deterioration. Oper. Res. 23: 4661.
  • Gaukler, G., R. Seifert. 2007. Applications of RFID in supply chains. H. Jung, F. Chen, B. Jeong, eds. Trends in Supply Chain Design and Management: Technologies and Methodologies. Springer-Verlag, London, 2948.
  • Gaukler, G. M., R. W. Seifert, W. H. Hausman. 2007. Item-level RFID in the retail supply chain. Prod. Oper. Manag. 16(1): 6576.
  • Gaukler, G. M., O. Ozer, W. H. Hausman. 2008. Order progress information: Improved dynamic emergency ordering policies. Prod. Oper. Manag. 17(6): 599613.
  • Gavirneni, S., R. Kapuscinski, S. Tayur. 1999. Value of information in capacitated supply chains. Manage. Sci. 45(1): 1624.
  • Goyal, S., B. Giri. 2001. Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134: 116.
  • Huang, G., J. Lau, K. Mak. 2003. The impacts of sharing production infomration on supply chain dynamics: A review of the literature. Int. J. Prod. Res. 41(7): 14831518.
  • Jedermann, R., J.-P. Emond, W. Lang. 2008. Shelf life prediction by intelligent rfid – technical limit of model accuracy. H.-J. Kreowski, B. Scholz-Reiter, H.-D. Haasis, eds. Dynamics in Logistics. Springer, Berlin Heidelberg, 231238.
  • Karaesmen, I., A. Scheller-Wolf, B. Deniz. 2008. Managing perishable and aging inventories: Review and future research directions. K. Kempf, P. Keskinocak, R. Uzsoy, eds. Handbook of Production Planning. Kluwer International Series in Operations Research and Management Science, Springer, Philadelphia, PA.
  • Kärkkäinen, M. 2003. Increasing efficiency in the supply chain for short shelf life goods using rfid tagging. J. Retail Distrib. Manag. 31(10): 529536.
  • Ketzenberg, M., M. Ferguson. 2008. Managing slow moving perishables in the grocery industry. Prod. Oper. Manag. 17(5): 513521.
  • Ketzenberg, M., E. van der Laan, R. H. Teunter. 2006. Value of information in closed loop supply chains. Prod. Oper. Manag. 15(3): 393406.
  • Ketzenberg, M., E. Rosenzweig, A. Marucheck, R. Metters. 2007. A framework for the value of information in inventory replenishment. Eur. J. Oper. Res. 183(3): 12301250.
  • Ketzenberg, M., G. Gaukler, V. Salin. 2012. Determining expiration dates for perishables. Texas A&M University Working Paper, College Station, TX.
  • Koutsoumanis, K., P. S. Taoukis, G. J. E. Nychas. 2005. Development of a safety monitoring and assurance system for chilled food product. Int. J. Food Microbiol. 100: 253260.
  • McMeekin, T., T. Ross. 1996. Shelf life prediction: Status and future possibilities. Int. J. Food Microbiol. 33: 6583.
  • Moinzadeh, K. 2002. A multi-echelon inventory system with information exchange. Manage. Sci. 48(3): 414426.
  • Moureh, J., D. Flick. 2004. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. Int. J. Refrigeration 27: 464474.
  • Nahmias, S. 1975. Optimal ordering policies for perishable inventory—II. Oper. Res. 23(4): 735749.
  • Nahmias, S. 1977. On ordering inventory when both demand and lifetime are random. Manage. Sci. 24(1): 8290.
  • Nahmias, S. 1982. Perishable inventory theory: A review. Oper. Res. 30(4): 680707.
  • Nandakumar, P., T. Morton. 1993. Near myopic heuristics for the fixed-life perishability problem. Oper. Res. 39(12): 14901498.
  • Nunes, M. C. N., J. P. Emond, K. V. Chau, M. Rauth, S. Dea, W. Pelletier. 2006. Effects of in-store conditions on the quality of fresh fruit and vegetables. Research Report to Public Super markets, University of Florida.
  • Olley, J., D. A. Ratkowsky. 1973. Temperature function integration and its importance in the storage and distribution of fresh foods above the freezing point. J. Food Technol. Australia 25(2): 6673.
  • Puterman, M. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons Inc, New York.
  • Raafat, F. 1991. Survey of literature on continuously deteriorating inventories. J. Oper. Res. Soc. 42(1): 2737.
  • Ratkowsky, D. A., J. Olley, T. A. McMeekin, A. Ball. 1982. Relationship between temperature and growth rate of bacteria cultures. J. Bacteriol. 149(1): 15.
  • Roberti, M. 2005. RFID will help keep perishables fresh. RFID J. Available at http://www.rfidjournal.com/article/articleview/1775/1/1
  • Rodriguez-Bermejo, J. P., J. I. Barriero, L. Ruiz-Garcia. 2007. Thermal study of a transport container. J. Food Eng. 80: 517527.
  • Ronsivalli, L. J., S. E. Charm. 1975. Spoilage and shelf life prediction of refrigerated fish. Marine Fisheries Rev. 37(4): 3234.
  • Ross, T. 1996. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501508.
  • Sahin, F., E. P. Robinson. 2002. Flow coordination and information sharing in supply chains: review, implications, and directions for future research. Decis. Sci. 33(4): 132.
  • Taoukis, P. S., K. Koutsoumanis, G. J. E. Nychas. 1999. Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int. J. Food Microbiol. 53: 2131.
  • Tijskens, L. M. M., J. J. Polderdijk. 1996. A generic model for keeping quality of vegetable produce during storage and distribution. Agricul. Sys. 51(4): 431452.
  • Tortola, J. 2005. Loss leader. Prog. Grocer 84(7): 1415.
  • Van der Duyn Schouten, F., M. Van Eijs, R. Heuts. 1994. The value of supplier information to improve management of a retailer's inventory. Decis. Sci. 25(1): 114.
  • Wessel, R. 2007. Chill-on develops prototype rfid-enabled time temperature indicator. RFID J. Available at http://www.rfidjournal.com/article/view/3749 (accessed date April 20, 2011).
  • Wikner, J., M. Rudberg. 2005. Introducing a customer order decoupling zone in logistics decision making. Int. J. Logist. Res. Appl. 8(3): 221224.