SEARCH

SEARCH BY CITATION

References

  • Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M, 2000. Large-scale synthesis of peptides. Biopolymers 55, 22750.
  • Arnold DL, Jackson RW, Waterfield NR, Mansfield JW, 2007. Evolution of microbial virulence: the benefits of stress. Trends in Genetics 23, 293300.
  • Avrahami D, Shai Y, 2004. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. Journal of Biological Chemistry 279, 1227785.
  • Badawy MEI, Rabea EI, 2011. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry. doi:10.1155/2011/460381.
  • Badosa E, Ferre R, Planas M et al., 2007. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 28, 227685.
  • Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A, 2009. Current status of bacterial canker spread on kiwifruit in Italy. Australasian Plant Pathology 4, 346.
  • Beaston R, 2012. Breeding for resistance to Psa: strategies & breeding. [http://www.kvh.org.nz/vdb/document/677]. Accessed 17 December 2012.
  • Bechinger B, 2004. Structure and function of membrane-lytic peptides. Critical Reviews in Plant Sciences 23, 27192.
  • Bender CL, Alarcon-Chaidez F, Gross DC, 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiological and Molecular Biology Reviews 63, 26692.
  • Bray BL, 2003. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Reviews Drug Discovery 2, 58793.
  • Brötz H, Sahl HG, 2000. New insights into the mechanism of action of lantibiotics – diverse biological effects by binding to the same molecular target. Journal of Antimicrobial Chemotherapy 46, 16.
  • Bull CT, De Boer SH, Denny TP et al., 2010. Comprehensive list of names of plant pathogenic bacteria, 1980–2007. Journal of Plant Pathology 92, 55192.
  • Bull CT, Clarke CR, Cai R, Vinatzer BA, Jardini TM, Koike ST, 2011. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytopathology 101, 84758.
  • Cha J-S, Cooksey DA, 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences, USA 88, 89159.
  • Chapman JR, Taylor RK, Weir BS et al., 2012. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology 102, 103444.
  • Chitwood DJ, 2002. Phytochemical based stratagies for nematode control. Annual Review of Phytopathology 40, 22149.
  • Cooksey DA, 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiological Revviews 14, 3816.
  • De Zoysa GH, Washington V, Lewis G, Sarojini V, 2012. The undiscovered potential of dehydroproline as a fire blight control option. Plant Pathology. doi: 10.1111/j.1365-3059.2012.02688.x.
  • Dong H, Delaney TP, Bauer DW, Beer SV, 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. The Plant Journal 20, 20715.
  • Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliott RA, Schroth MN, 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Review of Plant Pathology 59, 15368.
  • Elisha BG, Steyn LM, 1989. Aminoglycoside-O-phosphotransferase (APH• (3″)) activity in a clinical isolate of Acinetobacter calcoaceticus. South African Medical Journal 75, 2202.
  • Epand RM, Vogel HJ, 1999. Diversity of antimicrobial peptides and their mechanisms of action. BBA-Biomembranes 1462, 1128.
  • Everett KR, Taylor RK, Romberg MK et al., 2011. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australasian Plant Disease 6, 6771.
  • Fahlbusch K-G, Hammerschmidt F-J, Panten J et al., 2003. Flavors and Fragrances. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. doi: 10.1002/14356007.a11_141.
  • Falciani C, Lozzi L, Pini A et al., 2007. Molecular basis of branched peptides resistance to enzyme proteolysis. Chemical Biology and Drug Design 69, 21621.
  • Farrokhi N, Whitelegge JP, Brusslan JA, 2008. Plant peptides and peptidomics. Plant Biotechnology Journal 6, 10534.
  • Ferrante P, Scortichini M, 2009. Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. Journal of Phytopathology 157, 76870.
  • Ferrante P, Scortichini M, 2010. Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathology 59, 95462.
  • Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E, 2006. Inhibition of plant pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Applied and Environmental Microbiology 72, 33028.
  • Flemming CA, Trevors JT, 1989. Copper toxicity and chemistry in the environment: a review. Water, Air & Soil Pollution 44, 14358.
  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ, 1981. The Molecular Basis of Antibiotic Action. New York, USA: John Wiley & Sons.
  • Greer G, Saunders C, 2012. The Costs of Psa-V to the New Zealand Kiwifruit Industry and the Wider Community. Report to Kiwifruit Vine Health. Lincoln, New Zealand: Agribusiness and Economics Research Unit.
  • Guell I, Cabrefiga J, Badosa E et al., 2011. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of d-amino acids. Applied and Environmental Microbiology 77, 266775.
  • Guo L, Lim KB, Poduje CM et al., 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 18998.
  • Gururaja TL, Narasimhamurthy S, Payan DG, Anderson D, 2001. A novel artificial loop scaffold for the noncovalent constraint of peptides. Chemical Biology and Drug Design 7, 51527.
  • Han HS, 2003. Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae. Journal of Microbiology and Biotechnology 13, 1108.
  • Han HS, Nam HY, Koh YJ, Hur J-S, Jung JS, 2003. Molecular bases of high-level streptomycin resistance in Pseudomonas marginalis and Pseudomonas syringae pv. actinidiae. Journal of Microbiology 41, 1621.
  • Hancock REW, 1997. The bacterial outer membrane as a drug barrier. Trends in Microbiology 5, 3742.
  • Hancock REW, Sahl HG, 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24, 15517.
  • Huang HW, 2000. Action of antimicrobial peptides: two-state model. Biochemistry 39, 834752.
  • Jackson RW, Johnson LJ, Clarke SR, Arnold DL, 2011. Bacterial pathogen evolution: breaking news. Trends in Genetics 27, 3240.
  • Jeon Y-J, Kim S-K, 2001. Effect of antimicrobial activity by chitosan oligosaccharide N-conjugated with asparagine. Journal of Microbiology and Biotechnology 2001, 2.
  • Koh YJ, Cha BJ, Chung H, Lee DH, 1994. Outbreak and spread of bacterial canker in kiwifruit. Korean Journal of Plant Pathology 10, 6872.
  • Koh YJ, Park S, Lee D, 1996. Characteristics of bacterial canker of kiwifruit occurring in Korea and its control by trunk injection. Korean Journal of Plant Pathology 12, 32430.
  • Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS, 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. New Zealand Journal of Crop and Horticultural Science 38, 27582.
  • Kotan R, Kordali S, Cakir A, 2007. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Zeitschrift für Naturforschung C 62, 50713.
  • Lee JH, Kim JH, Kim GH, Jung JS, Hur J-S, Koh YJ, 2005. Comparative analysis of Korean and Japanese strains of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit. Plant Pathology Journal 21, 11926.
  • Li M, Tan GJ, Li Y, Cheng HY, Qiu K, Han X, 2005. Invertase and alpha-amylase activities and their relationship with bacterial canker (Pseudomonas syringae pv. actinidae) in kiwifruit of different cultivars. Plant Physiology Communications 41, 14852.
  • Linden JC, Stones RJ, Knutson KW, Gardner-Hughes CA, 2000. Organic disease control elicitors. Agro Food Industry Hi-Tech 11, 324.
  • Liu Z, Deshazer H, Chen AJRK, Kallenbach NR, 2006. Multivalent antimicrobial peptides from a reactive polymer scaffold. Journal of Medicinal Chemistry 49, 34369.
  • Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW, 2010. Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. International Journal of Peptide Research and Therapeutics 16, 199213.
  • Lorenzi V, Muselli A, Bernardini AF et al., 2009. Geraniol restores antibiotic activities against multidrug-resistant isolates from Gram-negative species. Antimicrobial Agents and Chemotherapy 53, 220911.
  • Mangoni ML, Shai Y, 2001. Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. Cellular and Molecular Life Sciences 68, 226780.
  • Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M, 2011. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS ONE 6, e27297.
  • Matsuzaki K, 1999. Why and how are peptide-lipid intercations utilized for self-defense? Magainins and tachyplesins as archetypes. BBA-Biomembranes 1462, 110.
  • Mazzaglia A, Studholme DJ, Taratufolo MC et al., 2012. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS ONE 7, e36518.
  • Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM, 1999. Aminoglycosides: activity and resistance. Antimicrobial Agents and Chemotherapy 43, 72737.
  • Mitchell RE, Greenwood DR, Sarojini V, 2008. An antibacterial pyrazole derivative from Burkholderia glumae, a bacterial pathogen of rice. Phytochemistry 69, 27047.
  • Montesinos E, 2007. Antimicrobial peptides and plant disease control. FEMS Microbiology Letters 270, 111.
  • Montesinos E, Bardaji E, 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chemistry & Biodiversity 5, 122537.
  • Nakajima M, Yamashita S, Takikawa Y, Tsuyumu S, Hibi T, Goto M, 1995. Similarity of streptomycin resistance gene(s) in Pseudomonas syringae pv. actinidiae with strA and strB of plasmid RSF1010. Annals of the Phytopathological Society of Japan 61, 48992.
  • Nakajima M, Goto M, Hibi T, 2002. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato. Journal of General Plant Pathology 68, 6874.
  • Nguyen LT, Chau JK, Perry NA, Boer LD, Zaat SaJ, Vogel HJ, 2010. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 5, e12684.
  • Nikaido H, 2009. Multidrug resistance in bacteria. Annual Review of Biochemistry 78, 11946.
  • Noller HF, 1984. Structure of ribosomal RNA. Annual Review of Biochemistry 53, 11962.
  • Pini A, Falciani C, Mantengoli E et al., 2010. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysacharide and prevents septic shock in vivo. The FASEB Journal 24, 4101522.
  • Reglinski TWK, Elmer P, 2011. Short report on commercially available elicitors, natural products and microbes for evaluation against Pseudomonas syringae pv. actinidiae. [http://www.kvh.org.nz/vdb/document/293]. Accessed 17 December 2012.
  • Renzi M, Copini P, Taddei AR et al., 2012. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102, 82740.
  • Sarkar SF, Guttman DS, 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology 70, 19992012.
  • Sawada H, Takeuchi T, Matsuda I, 1997. Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S–23S rRNA intergenic spacer sequences. Applied and Environmental Microbiology 63, 2828.
  • Sawada H, Suzuki F, Matsuda I, Saitou N, 1999. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution 49, 62744.
  • Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E, 1989. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene, 75, 27188.
  • Scortichini M, 1994. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathology 43, 10358.
  • Scortichini M, Rossi P, 1991. In vitro susceptibility of Erwinia amylovora (Burril) Winslow et al. to geraniol and citronellol. Journal of Applied Microbiology 71, 1138.
  • Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G, 2012. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Molecular Plant Pathology 13, 63140.
  • Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M, 1989. Occurence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. Annals of the Phytopathological Society of Japan 55, 42736.
  • Shai Y, 1999. Mechanisms of binding, insertion and destabilization of phospholipid bilayer membranes by an α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta – Biomembranes 1462, 5570.
  • Shai Y, 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 23648.
  • Tamura K, Imamura M, Yoneyama K et al., 2002. Role of phaseolotoxin production by Pseudomonas syringae pv. actinidiae in the formation of halo lesions of kiwifruit canker disease. Physiological and Molecular Plant Pathology 60, 20714.
  • Tanigawa T, Tanaka Y, Sashiwa H, Saimoto H, Shigemasa Y, 1992. Various biological effects of chitin derivatives. In: Brine CJ, Sandford PA, Zikakis JP, eds. Advances in Chitin and Chitosan. London, UK: Elsevier, 20615.
  • Testolin R, Ferguson AR, 2009. Kiwifruit (Actinidia spp.) production and marketing in Italy. New Zealand Journal of Crop Horticulture 37, 132.
  • Trombetta D, Castelli F, Sarpietro MG et al., 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49, 24748.
  • Vanneste JL, Voyle MD, 2003. Genetic basis of copper resistance in New Zealand strains of Pseudomonas syringae. New Zealand Plant Protection 56, 10922.
  • Vanneste JL, Kay C, Onorato R et al., 2011. Recent advances in the characterisation and control of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker on kiwifruit. In: Costa G, Ferguson AR, eds. Proceedings of the VII International Symposium on Kiwifruit, 2011. Faenza, Italy: ISHS Acta Horticulturae 913, 44355.
  • Vaughn SF, Spencer GF, 1993. Volatile monoterpenes as potential parent structures for new herbicides. Weed Science 41, 1149.
  • Waksman SA, 1953. Streptomycin: background, isolation, properties, and utilization. Science 118, 25966.
  • Whiteman S, Manning M, Blattmann P, Currie M, Tyson J, Snelgar B, 2012. Can Psa-V infect young vines via girdling wounds when artificially inoculated? NZ Kiwifruit Journal January/February, 157.
  • Yang L, Weiss TM, Lehrer RI, Huang HW, 2000. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophysical Journal 79, 20029.
  • Zasloff M, 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 38995.