Occurrence of the F129L mutation in Alternaria solani populations in Germany in response to QoI application, and its effect on sensitivity

Authors


Abstract

Early blight caused by Alternaria solani is a highly destructive disease of potatoes. Control of early blight mainly relies on the use of preventive fungicide treatments. Because of their high efficacy, azoxystrobin and other quinone outside inhibitors (QoIs) are commonly used to manage early blight. However, loss of sensitivity to QoIs has previously been reported for A. solani in the United States. Two hundred and three A. solani field isolates collected from 81 locations in Germany between 2005 and 2011 were screened for the presence of the F129L mutation in the cytochrome b gene; of these, 74 contained the F129L mutation. Sequence analysis revealed the occurrence of two structurally different cytb genes, which differed in the presence (genotype I) or absence (genotype II) of an intron, with genotype I being the most prevalent (63% of isolates). The F129L mutation was detected only in genotype II isolates, where it occurred in 97%. Sensitivity to azoxystrobin and pyraclostrobin was determined in conidial germination assays. All isolates possessing the F129L mutation had reduced sensitivity to azoxystrobin and, to a lesser extent, to pyraclostrobin. Early blight disease severity on plants treated with azoxystrobin was significantly higher for A. solani isolates with reduced fungicide sensitivity in the conidial germination assay compared with sensitive isolates. Data suggest an accumulation of F129L isolates in the German A. solani population over the years 2009–2011. It is assumed that the application of QoIs has selected for the occurrence of F129L mutations, which may contribute to loss of fungicide efficacy.

Ancillary