Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae



Light is the energy source for photosynthetic organisms but, if absorbed in excess, it can drive to the formation of reactive oxygen species and photoinhibition. One major mechanism to avoid oxidative damage in plants and algae is the dissipation of excess excitation energy as heat, called non-photochemical quenching (NPQ). Eukaryotic algae and plants, however, rely on two different proteins for NPQ activation, the former mainly depending on LHCSR (Lhc-like protein Stress Related; previously called Li818, Light Induced protein 818), whereas in the latter the major role is played by a distinct protein, PSBS (photosystem II subunit S). In the moss Physcomitrella patens, which diverged from vascular plants early after land colonization, both these proteins were found to be present and active in inducing NPQ, suggesting that during plants evolution both mechanisms co-existed. In order to investigate in more detail NPQ adaptation toward land colonization, we analyzed Streptophyte algae, the latest organisms to diverge from the land plants ancestors. Among them we found evidence of a PSBS-dependent NPQ in species belonging to Charales, Coleochaetales and Zygnematales, the latest groups to diverge from land plants ancestors. On the contrary earlier diverging algae, as Mesostigmatales and Klebsormidiales, likely rely on LHCSR for their NPQ activation. Presented evidence thus suggests that PSBS-dependent NPQ, although possibly present in some Chlorophyta, was stably acquired in the Cambrian period about 500 million years ago, before late Streptophyte algae diverged from plants ancestors.