Sucrose induces expression of the sorbitol-6-phosphate dehydrogenase gene in source leaves of loquat



Rosaceae fruit trees use sorbitol and sucrose as translocating sugars and the sorbitol-to-sucrose ratio in source leaves determines apple fruit quality. Here, we investigate the effects of sugars on the expression of genes encoding key photosynthetic enzymes, including sorbitol-6-phosphate dehydrogenase (S6PDH, EC, sucrose phosphate synthase (SPS, EC, and ADP-glucose pyrophosphorylase (ADPGPPase, EC to understand the sugar-signaling mechanism in Rosaceae fruit trees. Mature leaf-petiole cuttings of loquat (Eriobotrya japonica Lindl. cv. Mogi) were supplied with a water, sorbitol or sucrose solution for 2 days at 20°C. The relative levels of the transcripts were analyzed by real-time polymerase chain reaction (PCR). S6PDH transcription was decreased by sorbitol but drastically increased by sucrose. SPS and ADPGPPase large subunit transcription were decreased by sucrose and sorbitol. The simultaneous application of sorbitol and sucrose revealed that S6PDH transcription increased in a dose-dependent manner with sucrose. These results show that both sorbitol and sucrose work as signaling molecules in source organs of Rosaceae fruit trees. These trees have mechanisms to positively keep sorbitol as the dominant translocating sugar, suggesting that sorbitol plays an important role in their survival strategy. Effects of various sugars on S6PDH expression were investigated. Palatinose, a sucrose analog, increased S6PDH transcription much more drastically than sucrose. Mannose and 3-O-methylglucose, glucose analogs, also increased S6PDH transcription; however, glucose did not. Models of sugar signaling in source organs of Rosaceae fruit trees are discussed.