Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis

Authors


Abstract

Tartary buckwheat (Fagopyrum tataricum Gaertn.) contains high concentrations of flavonoids. The flavonoids are mainly represented by rutin, anthocyanins and proanthocyanins in tartary buckwheat. R2R3-type MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthetic pathway. In this study, two TF genes, FtMYB1 and FtMYB2, were isolated from F. tataricum and characterized. The results of bioinformatic analysis indicated that the putative FtMYB1 and FtMYB2 proteins belonged to the R2R3-MYB family and displayed a high degree of similarity with TaMYB14 and AtMYB123/TT2. In vitro and in vivo evidence both showed the two proteins were located in the nucleus and exhibited transcriptional activation activities. During florescence, both FtMYB1 and FtMYB2 were more highly expressed in the flowers than any other organ. The overexpression of FtMYB1 and FtMYB2 significantly enhanced the accumulation of proanthocyanidins (PAs) and showed a strong effect on the target genes' expression in Nicotiana tabacum. The expression of dihydroflavonol-4-reductase (DFR) was upregulated to 5.6-fold higher than that of control, and the expression level was lower for flavonol synthase (FLS). To our knowledge, this is the first functional characterization of two MYB TFs from F. tataricum that control the PA pathway.

Ancillary