SEARCH

SEARCH BY CITATION

Keywords:

  • N1 suppression;
  • N1 components;
  • Self-generation;
  • Sensory attenuation;
  • Auditory;
  • Event-related potential (ERP);
  • Human;
  • Stimulus onset asynchrony (SOA)

Abstract

The suppression of the auditory N1 event-related potential (ERP) to self-initiated sounds became a popular tool to tap into sensory-specific forward modeling. It is assumed that processing in the auditory cortex is attenuated due to a match between sensory stimulation and a specific sensory prediction afforded by a forward model of the motor command. The present study shows that N1 suppression was dramatically increased with long (∼3 s) stimulus onset asynchronies (SOA), whereas P2 suppression was equal in all SOA conditions (0.8, 1.6, 3.2 s). Thus, the P2 was found to be more sensitive to self-initiation effects than the N1 with short SOAs. Moreover, only the unspecific but not the sensory-specific N1 components were suppressed for self-initiated sounds suggesting that N1-suppression effects mainly reflect an attenuated orienting response. We argue that the N1-suppression effect is a rather indirect measure of sensory-specific forward models.