Get access

Microtopography and the Properties of Residual Peat Are Convenient Indicators for Restoration Planning of Abandoned Extracted Peatlands



The natural recovery of vegetation on abandoned peat extraction areas lasts for decades and the result of restoration succession can be unpredictable. The aim of the study was to specify environmental factors that affect the formation of the pioneer stages of mire communities and, therefore, be helpful in the prediction of the resulting ecosystem properties. We used the national inventory data from 64 milled peatlands in Estonia, distributed over the region of 300 × 200 km. This is the first national-scale statistical evaluation of abandoned extracted peatlands. During surveys, vascular plants, bryophytes, and residual peat properties were recorded on three microtopographic forms: flats, ditch margins, and ditches. The microtopography was the main factor distinguishing the composition of plant communities on flats and ditches, while ditch margins resembled flats. The extracted indicator species suggested two successional pathways, toward fen or raised bog community. A single indicator trait—the depth of residual peat, which combines the information about peat properties (e.g. pH, ash content, and trophicity status), predicted the plant community succession in microtopographic habitats. We suggest that peatland management plans about the cost-efficient restoration of abandoned peat mining areas should consider properties of residual peat layer as the baseline indicator: milled peatfields with thin (<2.3 m) and well-decomposed residual peat should be restored toward fen vegetation types, whereas sites with thick (>2.3 m) and less decomposed residual peat layer should be restored toward transitional mires or raised bogs. Specific methodological suggestions are provided.