Get access

Genetic Structure of Remnant Populations and Cultivars of Switchgrass (Panicum virgatum) in the Context of Prairie Conservation and Restoration



Switchgrass (Panicum virgatum L.) is a dominant, perennial C4 grass of North American tallgrass prairies with cultivars that are widely used in grassland restoration, pastures, and landscaping. However, these cultivars may be genetically dissimilar to small, remnant populations, raising concerns about altered genetic composition of native populations through gene flow. To address this issue on a local scale in Ohio and Illinois, we used microsatellite markers to characterize genetic diversity and differentiation of 10 remnant prairie populations (5 in each state) and 8 common cultivars. The bulk of genetic variation was found to reside within rather than among wild populations, consistent with the outcrossing breeding system of switchgrass. Genetic diversity was similar among the remnant populations despite large differences in area (approximately 2–2,590 ha), highlighting the importance of small native populations as reservoirs of variation and potential seed sources for prairie restoration. Cultivars generally had similar levels of variation to the wild populations, but we found clear genetic dissimilarity between wild and cultivated gene pools (especially for Kanlow, but also Trailblazer, Blackwell, Dacotah, Summer, and Sunburst cultivars). This suggests that using cultivars in local prairie restoration efforts may alter the genetic composition of wild populations. Whether such changes are deemed as negative depends on the cultivar under consideration and specific conservation goals for preserving native switchgrass populations. Patterns of genetic variation in remnant prairie populations and potential cultivar sources can be used to develop guidelines for restoration as well as future planting of cultivars for biofuels.