SEARCH

SEARCH BY CITATION

References

  • 1
    Hogan BL, Yingling JM. Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr. Opin. Genet. Dev. 1998; 8: 481486.
  • 2
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3: 393403.
  • 3
    Sabatini F, Petecchia L, Tavian M et al. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest. 2005; 85: 962971.
  • 4
    Mendez-Ferrer S, Michurina TV, Ferraro F et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829834.
  • 5
    Tropea KA, Leder E, Aslam M et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012; 302: L829837.
  • 6
    Islam MN, Das SR, Emin MT et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012; 18: 759765.
  • 7
    Spees JL, Olson SD, Whitney MJ et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. U.S.A. 2006; 103: 12831288.
  • 8
    Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315317.
  • 9
    Alt E, Yan Y, Gehmert S et al. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol. Cell 2011; 103: 197208.
  • 10
    Blasi A, Martino C, Balducci L et al. Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vasc. Cell 2011; 3: 5.
  • 11
    da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006; 119: 22042213.
  • 12
    Lama VN, Smith L, Badri L et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J. Clin. Invest. 2007; 117: 989996.
  • 13
    Ricciardi M, Malpeli G, Bifari F et al. Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS ONE 2012; 7: e35639.
  • 14
    Badri L, Murray S, Liu LX et al. Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am. J. Respir. Crit. Care Med. 2011; 183: 10621070.
  • 15
    Walker N, Badri L, Wettlaufer S et al. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am. J. Pathol. 2011; 178: 24612469.
  • 16
    Rehan VK, Sugano S, Wang Y et al. Evidence for the presence of lipofibroblasts in human lung. Exp. Lung Res. 2006; 32: 379393.
  • 17
    Spees JL, Olson SD, Ylostalo J et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl Acad. Sci. U.S.A. 2003; 100: 23972402.
  • 18
    Karoubi G, Cortes-Dericks L, Breyer I et al. Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells. Lab Invest. 2009; 89: 11001114.
  • 19
    Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 2000; 6: 12821286.
  • 20
    Le Blanc K, Tammik C, Rosendahl K et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003; 31: 890896.
  • 21
    Jarvinen L, Badri L, Wettlaufer S et al. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J. Immunol. 2008; 181: 43894396.
  • 22
    Huang XP, Sun Z, Miyagi Y et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 2010; 122: 24192429.
  • 23
    Poncelet AJ, Vercruysse J, Saliez A et al. Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 2007; 83: 783790.
  • 24
    Beggs KJ, Lyubimov A, Borneman JN et al. Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant. 2006; 15: 711721.
  • 25
    Nauta AJ, Westerhuis G, Kruisselbrink AB et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108: 21142120.
  • 26
    Poggi A, Prevosto C, Zancolli M et al. NKG2D and natural cytotoxicity receptors are involved in natural killer cell interaction with self-antigen presenting cells and stromal cells. Ann. N. Y. Acad. Sci. 2007; 1109: 4757.
  • 27
    Sotiropoulou PA, Perez SA, Gritzapis AD et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006; 24: 7485.
  • 28
    Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 2011; 66: 523531.
  • 29
    Bai L, Lennon DP, Eaton V et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57: 11921203.
  • 30
    Duffy MM, Ritter T, Ceredig R et al. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res. Ther. 2011; 2: 34.
  • 31
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 18151822.
  • 32
    English K, Wood KJ. Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr. Opin. Organ. Transplant. 2010; 16: 9095.
  • 33
    Yagi H, Soto-Gutierrez A, Parekkadan B et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 2010; 19: 667679.
  • 34
    Krampera M, Glennie S, Dyson J et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 37223729.
  • 35
    English K, Ryan JM, Tobin L et al. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin. Exp. Immunol. 2009; 156: 149160.
  • 36
    Tse WT, Pendleton JD, Beyer WM et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389397.
  • 37
    English K, Barry FP, Field-Corbett CP et al. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett. 2007; 110: 91100.
  • 38
    Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl Acad. Sci. U.S.A. 2002; 99: 89328937.
  • 39
    Zhao LR, Duan WM, Reyes M et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 2002; 174: 1120.
  • 40
    Zhang J, Jia XH, Xu ZW et al. Improved mesenchymal stem cell survival in ischemic heart through electroacupuncture. Chin. J. Integr. Med. 2012; Epub ahead of print.
  • 41
    Morigi M, Imberti B, Zoja C et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J. Am. Soc. Nephrol. 2004; 15: 17941804.
  • 42
    Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 2007; 8: 703713.
  • 43
    McQualter JL, Yuen K, Williams B et al. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl Acad. Sci. U.S.A. 2010; 107: 14141419.
  • 44
    Volckaert T, Dill E, Campbell A et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J. Clin. Invest. 2011; 121: 44094419.
  • 45
    Sahin E, Colla S, Liesa M et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011; 470: 359365.
  • 46
    Ortiz LA, Gambelli F, McBride C et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl Acad. Sci. U.S.A. 2003; 100: 84078411.
  • 47
    Cui A, Dai HP, Dai JW et al. [Effects of bone marrow mesenchymal stem cells on bleomycin induced pulmonary fibrosis in rats]. Zhonghua Jie He He Hu Xi Za Zhi. 2007; 30: 677682.
  • 48
    Zhao F, Zhang YF, Liu YG et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant. Proc. 2008; 40: 17001705.
  • 49
    Moodley Y, Atienza D, Manuelpillai U et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am. J. Pathol. 2009; 175: 303313.
  • 50
    Bitencourt CS, Pereira PA, Ramos SG et al. Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. Fibrogenesis Tissue Repair. 2011; 4: 3.
  • 51
    Rochefort GY, Vaudin P, Bonnet N et al. Influence of hypoxia on the domiciliation of mesenchymal stem cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies? Respir. Res. 2005; 6: 125.
  • 52
    Kanki-Horimoto S, Horimoto H, Mieno S et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006; 114: I181185.
  • 53
    Baber SR, Deng W, Master RG et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2007; 292: H11201128.
  • 54
    Umar S, de Visser YP, Steendijk P et al. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2009; 297: H16061616.
  • 55
    Takemiya K, Kai H, Yasukawa H et al. Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res. Cardiol. 2010; 105: 409417.
  • 56
    He ZX, Wang HW, Shang F et al. [Administrating bone marrow mesenchymal stem cells to treat the experimental pulmonary arterial hypertension in rats]. Zhonghua Yi Xue Za Zhi. 2009; 89: 21102115.
  • 57
    Jungebluth P, Luedde M, Ferrer E et al. Mesenchymal stem cells restore lung function by recruiting resident and non-resident proteins. Cell Transplant. 2011; 20: 15611574.
  • 58
    Luan Y, Zhang ZH, Wei DE et al. Implantation of mesenchymal stem cells improves right ventricular impairments caused by experimental pulmonary hypertension. Am. J. Med. Sci. 2011; 343: 402406.
  • 59
    Liang OD, Mitsialis SA, Chang MS et al. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 2011; 29: 99107.
  • 60
    Aslam M, Baveja R, Liang OD et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 2009; 180: 11221130.
  • 61
    van Haaften T, Byrne R, Bonnet S et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am. J. Respir. Crit. Care Med. 2009; 180: 11311142.
  • 62
    Hansmann G, Fernandez-Gonzalez A, Aslam M et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm. Circ. 2012; 2: 170181.
  • 63
    Waszak P, Alphonse R, Vadivel A et al. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev. 2012; 21: 27892797.
  • 64
    Zhang X, Wang H, Shi Y et al. Role of bone marrow-derived mesenchymal stem cells in the prevention of hyperoxia-induced lung injury in newborn mice. Cell Biol. Int. 2012; 36: 589594.
  • 65
    Gupta N, Su X, Popov B et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J. Immunol. 2007; 179: 18551863.
  • 66
    Mei SH, McCarter SD, Deng Y et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. Plos Med. 2007; 4: e269.
  • 67
    Xu J, Woods CR, Mora AL et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007; 293: L131141.
  • 68
    Fang X, Neyrinck AP, Matthay MA et al. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J. Biol. Chem. 2010; 285: 2621126222.
  • 69
    Krasnodembskaya A, Song Y, Fang X et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 22292238.
  • 70
    Lee JW, Fang X, Gupta N et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl Acad. Sci. U.S.A. 2009; 106: 1635716362.
  • 71
    Kim ES, Chang YS, Choi SJ et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir. Res. 2011; 12: 108.
  • 72
    Liang ZX, Sun JP, Wang P et al. Bone marrow-derived mesenchymal stem cells protect rats from endotoxin-induced acute lung injury. Chin. Med. J. (Engl.) 2011; 124: 27152722.
  • 73
    Ionescu L, Byrne RN, van Haaften T et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012; 303: 967977.
  • 74
    Tai WL, Dong ZX, Zhang DD et al. Therapeutic effect of intravenous bone marrow-derived mesenchymal stem cell transplantation on early-stage LPS-induced acute lung injury in mice. Nan Fang Yi Ke Da Xue Xue Bao 2012; 32: 283290.
  • 75
    Bonfield TL, Koloze M, Lennon DP et al. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 299: L760770.
  • 76
    Nemeth K, Keane-Myers A, Brown JM et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc. Natl Acad. Sci. U.S.A. 2010; 107: 56525657.
  • 77
    Goodwin M, Sueblinvong V, Eisenhauer P et al. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells 2011; 29: 11371148.
  • 78
    Firinci F, Karaman M, Baran Y et al. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. Int. Immunopharmacol. 2011; 11: 11201126.
  • 79
    Lee SH, Jang AS, Kwon JH et al. Mesenchymal stem cell transfer suppresses airway remodeling in a toluene diisocyanate-induced murine asthma model. Allergy Asthma Immunol. Res. 2011; 3: 205211.
  • 80
    Manning E, Pham S, Li S et al. Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury. Hum. Gene Ther. 2010; 21: 713727.
  • 81
    Chen S, Chen L, Wu X et al. Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats. J. Surg. Res. 2012; 178: 8191.
  • 82
    Pan GZ, Yang Y, Zhang J et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. J. Surg. Res. 2012; 178: 935948.
  • 83
    Poynter JA, Herrmann JL, Manukyan MC et al. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J. Am. Coll. Surg. 2011; 213: 253260.
  • 84
    Liu H, McTaggart SJ, Johnson DW et al. Original article anti-oxidant pathways are stimulated by mesenchymal stromal cells in renal repair after ischemic injury. Cytotherapy 2012; 14: 162172.
  • 85
    Fischer UM, Harting MT, Jimenez F et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009; 18: 683692.
  • 86
    Schrepfer S, Deuse T, Reichenspurner H et al. Stem cell transplantation: the lung barrier. Transplant. Proc. 2007; 39: 573576.
  • 87
    Yan X, Liu Y, Han Q et al. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp. Hematol. 2007; 35: 14661475.
  • 88
    Tan J, Wu W, Xu X et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 2012; 307: 11691177.
  • 89
    Weiss DJ, Casaburi R, Flannery R et al. A placebo-controlled randomized trial of mesenchymal stem cells in chronic obstructive pulmonary disease. Chest 2012; Epub ahead of print.
  • 90
    Osiris Therapeutics. 2008. A phase II, multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of PROCHYMAL™ (ex vivo cultured adult human mesenchymal stem cells) intravenous infusion for the treatment of subjects with moderate to severe chronic obstructive pulmonary disease (COPD). [Accessed 28 Aug 2012.] Available from URL: http://www.clinicaltrial.gov/ct2/show/NCT00683722
  • 91
    Allison M. Genzyme backs Osiris, despite Prochymal flop. Nat. Biotechnol. 2009; 27: 966967.
  • 92
    The Prince Charles Hospital. 2010. A study to evaluate the potential of mesenchymal stromal cells to treat obliterative bronchiolitis after lung transplantation. [Accessed 26 November 2012.] Available from URL: http://clinicaltrials.gov/ct2/show/NCT01175655
  • 93
    Estenne M, Maurer JR, Boehler A et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J. Heart Lung Transplant. 2002; 21: 297310.
  • 94
    Chambers DC, Hopkins PM, Sturm MM et al. Mesenchymal stromal cell therapy for bronchiolitis obliterans syndrome—preliminary data in humans. J. Heart Lung Transplant. 2012; 31: 567568.
  • 95
    The Prince Charles Hospital. 2012. A phase I study to evaluate the potential role of mesenchymal stem cells in the treatment of idiopathic pulmonary fibrosis. [Accessed 26 Nov 2012.] Available from URL: http://clinicaltrials.gov/ct2/show/NCT01385644
  • 96
    Medipost Co. Ltd. 2012. Open label, single-centre, phase 1 clinical study to evaluate the safety and the efficacy of PNEUMOSTEM treatment in premature infants with bronchopulmonary dysplasia. [Accessed 28 Aug 2012.] Available from URL: http://clinicaltrials.gov/ct2/show/NCT01297205
  • 97
    Couzin J, Kaiser J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 2005; 307: 1028.