SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    CAC (Codex Alimentarius Commission). Principles and guidelines for the conduct of Microbiological Risk Management (MRM). CAC/GL 63+2007, 2007.
  • 2
    Regulation (EC) No 178/2002 of the European parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety (OJ L 31, 1.2.2002), 2002.
  • 3
    Havelaar AH, Nauta MJ, Jansen JT. Fine-tuning food safety objectives and risk assessment. International Journal of Food Microbiology, 2004; 93:1129.
  • 4
    van Schothorst M. Practical approaches to risk assessment. Journal of Food Protection, 1997; 60:14391443.
  • 5
    Tenenhaus-Aziza F. Risk-based approach for microbial food safety in dairy industry. Application to Listeria monocytogenes in soft cheese made from pasteurized milk. PhD thesis, Paris, AgroParisTech, 2007.
  • 6
    Swinnen IA, Bernaerts K, Dens EJ, Geeraerd AH, van Impe JF. Predictive modelling of the microbial lag phase: A review. International Journal of Food Microbiology, 2004; 94:137159.
  • 7
    Buchanan RL, Whiting RC, Damert WC. When is simple good enough: A comparison of the gompertz, baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology, 1997; 14:313326.
  • 8
    Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 1994; 23(3–4):277294.
  • 9
    Robinson TP, Ocio MJ, Kaloti A, Mackey BM. The effect of the growth environment on the lag phase of Listeria monocytogenes. International Journal of Food Microbiology, 1998; 44:8392.
  • 10
    Squires RW, Hartsell SE. Measurement of relative lag time. Journal of Bacteriology, 1955; 69(2):226227.
  • 11
    Mellefont LA, Ross T. The effect of abrupt osmotic shifts on the lag phase duration of foodborne bacteria. International Journal of Food Microbiology, 2003; 83(3):295305.
  • 12
    Peneau S, Chassaing D, Carpentier, B. First evidence of division and accumulation of viable but non-culturable Pseudomonas fluorescens cells on surfaces subjected to conditions encountered at meat processing premises. Applied and Environmental Microbiology, 2007; 73:28392846.
  • 13
    Malakar PK, Barker GC, Zwietering MH, van't Riet K. Relevance of microbial interactions to predictive microbiology. International Journal of Food Microbiology, 2003; 84:263272.
  • 14
    Dens EJ, van Impe JF. On the importance of taking space into account when modeling microbial competition in structured food products. Mathematics and Computers in Simulation, 2000; 53:443448.
  • 15
    Guillier L, Augustin J-C. Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions. International Journal Food Microbiology, 2006; 111(3):241251.
  • 16
    Vose D. Risk Analysis: A Quantitative Guide, 3rd ed. Chichester, UK: Wiley, 2008.
  • 17
    Bemrah N, Sanaa M, Cassin MH, Griffiths MW, Cerf O. Quantitative risk assessment of human listerioris from consumption of soft cheese made from raw milk. Preventive Veterinary Medicine, 1998; 37:129145.
  • 18
    Aziza F, Mettler E, Daudin J-J, Sanaa M. Stochastic, compartmental and dynamic modeling of cross-contamination during mechanical smearing of cheeses. Risk Analysis, 2006; 26:731745.
  • 19
    Baranyi J, Roberts TA, Mac Clure P. A non-autonomous differential equation to model bacterial growth. Food Microbiology, 1993; 10:4359.
  • 20
    Kono T. Kinetics of microbial cell growth. Biotechnology and Bioengineering, 1968; 10:105131.
  • 21
    Rosso L, Bajard S, Flandrois JP, Lahellec C, Fournaud J, Veit P. Differential growth of Listeria monocytogenes at 4 and 8°C: Consequences for the shelf-life of chilled products. Journal of Food Protection, 1996; 59:944949.
  • 22
    Le Marc Y. Développement d'un modèle modulaire décrivant l'effet des interactions entre les facteurs environnementaux sur les aptitudes de croissance de Listeria, PhD thesis, Quimper, Université de Bretagne Occidentale, 2001.
  • 23
    Augustin J-C, Zuliani V, Cornu M, Guillier L. Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. Journal of Applied Microbiology, 2005; 99:10191042.
  • 24
    Zamora MC, Zaritzky NE. Modeling of microbial growth in refrigerated packaged beef. Journal of Food Science, 1985; 50(4):10031006.
  • 25
    FAO/WHO. Risk assessment of Listeria monocytogenes in ready+to+eat foods. Technical report. Microbiological risk assessment series 5. Rome: Food and Agriculture Organization (FAO) of the United Nations and World Health Organization (WHO), 2004.
  • 26
    Buchanan RL, Smith JL, Longa W. Microbial risk assessment: Dose-response relations and risk characterization. International Journal of Food Microbiology, 2000; 58:159172.
  • 27
    Rieu E, Duhem K, Vindel E, Sanaa M. Food safety objectives should integrate the variability of the concentration of pathogen. Risk Analysis, 2007; 27(2):373386.
  • 28
    Sanaa M, Coroller L, Cerf O. Risk assessment of listeriosis linked to consumption of two soft cheeses made from raw milk: Camembert of Normandy and Brie of Meaux. Risk Analysis, 2004; 24:389399.
  • 29
    Ivanek R, Gröhn YT, Wiedmann M, Wells MT. Mathematical model of Listeria monocytogenes cross-contamination in a fish processing plant. Journal of Food Protection, 2004; 67:26882697.
  • 30
    FAO/WHO. Risk Characterization of Microbiological Hazards in Food. Guidelines. Microbiological risk assessment series 17. Rome: Food and Agriculture Organization (FAO) of the United Nations and World Health Organization (WHO), 2009.
  • 31
    Schvartzman S, Maffre A, Tenenhaus-Aziza F, Sanaa M, Butler F, Jordan K. Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurized or raw milk. International Journal of Food Microbiology, 2011; 145(Supp 1):S31S38.
  • 32
    Gallagher DL, Ebel ED, Kause JR. FSIS risk assessment for Listeria monocytogenes in deli meats. U.S. Food and Drug Administration/Food Safety and Inspection Service (FDA/FSIS). 2003.
  • 33
    Adrião A, Vieira M, Fernandes I, Barbosa M, Sol M, Tenreiro RP, Chambel L, Barata B, Zilhao I, Shama G, Perni S, Jordan SJ, Andrew PW, Faleiro ML. Marked intra-strain variation in response of Listeria monocytogenes dairy isolates to acid or salt stress and the effect of acid or salt adaptation on adherence to abiotic surfaces. International Journal of Food Microbiology, 2008; 123(1–2):142150.
  • 34
    Kusumaningrum HD, Riboldi G, Hazeleger WC, Beumer RR. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. International Journal of Food Microbiology, 2003; 85:227236.
  • 35
    Kusumaningrum HD, van Asselt ED, Beumer RR, Zwietering MH. A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via domestic kitchen surfaces. Journal of Food Protection, 2004; 67:18921903.
  • 36
    Francois K, Devlieghere F, Uyttendaele M, Debevere J. Risk assessment of Listeria monocytogenes: Impact of individual cell variability on the exposure assessment step. Risk Analysis, 2006; 26:105114.
  • 37
    Ellouze M, Gauchi JP, Augustin J-C. Global sensitivity analysis applied to a contamination assessment model of Listeria monocytogenes in cold smoked salmon at consumption. Risk Analysis, 2010; 30(5):841852.
  • 38
    Pérez-Rodríguez F, Valero A, Carrasco E, García RM, Zurera G. Understanding and modelling bacterial transfer to foods: A review. Trends in Food Science and Technology, 2008; 19(3):131144.
  • 39
    Lamboni M, Makowski D, Lehuger S, Gabrielle B, Monod H. Multivariate global sensitivity analysis for dynamic crop models. Fiels Crops Research, 2008; 113(3–4):312320.