SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet Infectious Diseases, 2009; 9(6):365375.
  • 2
    D'Souza RM, Becker NG, Hall G, Moodie KB. Does ambient temperature affect foodborne disease? Epidemiology, 2004; 15(1):8692.
  • 3
    Patrick ME, Christiansen LE, Waino M, Ethelberg S. Madsen H et al. Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Applied and Environmental Microbiology, 2004; 70(12):74747480.
  • 4
    Kovats RS, Edwards SJ, Charron D, Cowden J, D'Souza RM et al. Climate variability and campylobacter infection: An international study. International Journal of Biometeorology, 2005; 49(4):207214.
  • 5
    Kovats R, Edwards SJ, Hajat S, Armstrong BG, Ebi KL, Menne B. The effect of temperature on food poisoning: A time-series analysis of salmonellosis in ten European countries. Epidemiology and Infection, 2004; 132:443453.
  • 6
    Naumova EN, Jagai JS, Matyas B, DeMaria A, Jr., MacNeill IB et al. Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiology and Infection, 2007; 135(2):281292.
  • 7
    Lake IR, Gillespie IA, Bentham G, Nichols GL, Lane C, Adak GK, Threlfall EJ. A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiology and Infection, 2009; 137(11):15381547.
  • 8
    Andersson Y, Ekdahl K. Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Eurosurveillance, 2006; 11(8):E060803 2.
  • 9
    Schets FM, Berg van den HHJL, Meulmeester de AA, Dijk van E, Rutjes SA, Hooijdonk van HJP, de Roda Husman AM. Vibrio alginolyticus infections in the Netherlands after swimming in the North Sea. Eurosurveillance Weekly, 2006; 11:11.
  • 10
    Semenza JC, Nichols G. Cryptosporidiosis surveillance and water-borne outbreaks in Europe. Eurosurveillance, 2007; 12(5):E13E14.
  • 11
    Nichols G, Lanem C, Asgari N, Verlander NQ, Charlett A. Rainfall and outbreaks of drinking water related disease and in England and Wales. Journal of Water and Health, 2009; 7(1):18
  • 12
    Schijven JF, de Roda Husman, AM. Effect of climate changes on waterborne disease in the Netherlands. Water Science and Technology, 2005; 51(5):7987.
  • 13
    Semenza JC, Höser C, Herbst S, Rechenburg A, Suk JE, Frechen T, Kistemann T. Knowledge mapping for climate change and food and waterborne diseases. Critical Reviews in Environmental Science and Technology, 2012; 42:378411.
  • 14
    Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA. Climate variability and change in the United States: Potential impacts on water- and foodborne diseases caused by microbiologic agents. Environmental Health Perspectives, 2001; 109(Suppl 2):211221.
  • 15
    Pachauri RK. Climate change 2007. In Pachauri RK, Reisinger A. (eds). Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report. Geneva: IPCC, 2008.
  • 16
    WHA (World Health Assembly). Sixty-First World Health Assembly, WHA61.19. Climate Change and Health, 2008. Available at: http://apps.who.int/gb/ebwha/pdf_files/A61/A61_R19-en.pdf, Accessed April 9, 2012.
  • 17
    WHO (World Health Organization). Protecting Health from Climate Change: Global Research Priorities, 2009. Available at: http://whqlibdoc.who.int/publications/2009/9789241598187_eng.pdf, Accessed April 9, 2012.
  • 18
    Haas CN, Gerba CP. Quantitative Microbiological Risk Assessment. New York: Wiley and Sons, 1999.
  • 19
    Vose D. Risk Analysis: A Quantitative Guide, 2nd ed. West Sussex: John Wiley and Sons, 2000.
  • 20
    Lodder WJ, de Roda Husman AM. Presence of noroviruses and other enteric viruses in sewage and surface waters in the Netherlands. Applied and Environmental Microbiology, 2005; 71(3):14531461.
  • 21
    Havelaar AH. Campylobacteriosis in the Netherlands. RIVM Report 250911001, 2001 [in Dutch].
  • 22
    Hoogenboezem W, Medema GJ, Schijven JF, Rijs G. Presence and sources of Cryptosporidium and Giardia in the Netherlands. H2O, 2000; 23:1718 [in Dutch].
  • 23
    Schijven JF, Rijs G, Verstappen G, de Roda Husman AM. Estimation of the risk of infection of dairy cows by food and mouth disease virus spread by way of surface water. Risk Analysis, 2005; 25(1):1321.
  • 24
    U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds, 2nd ed. Washington, DC: US Department of Agriculture, 1986.
  • 25
    Bertrand I, Schijven JF, Sanchez G, Wyn-Jones P, Ottoson J, Morin T, Muscillo M, Verani M, Nasser A, de Roda Husman AM, Myrmel M, Sellwood J, Cook N, Gantzer C. The impact of temperature on the inactivation of enteric viruses in food and water: A review. Journal of Applied Microbiology, 2012; 112(6):10591074.
  • 26
    Havelaar AH. Campylobacteriosis in the Netherlands. RIVM Report 250911001. Bilthoven, The Netherlands: National Institute of Public Health and the Environment, 2001 [in Dutch].
  • 27
    Ives RL, Kamarainen AM, John DE, Rose JB. Use of cell culture to assess Cryptosporidium parvum survival rates in natural groundwaters and surface waters. Applied and Environmental Microbiology, 2007; 73(18):59685970.
  • 28
    Burkhardt W, Calci K. Selective accumulation may account for shellfish-associated viral illness. Applied and Environmental Microbiology, 2000; 66(4):13751378.
  • 29
    Formiga-Cruz M, Allard AK, Conden-Hansson AC, Henshilwood K. Hernroth BE, Jofre J, Lees DN, Lucena F, Papapetropoulou M, Rangdale RE, Tsibouxi A, Vantarakis A, Girones R. Evaluation of potential indicators of viral contamination in shellfish and their applicability to diverse geographical areas. Applied and Environmental Microbiology, 2003; 69(3):15561563.
  • 30
    Graczyk TK, Lewis EJ, Glass G, Dasilva AJ, Tamang L et al. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay. Parasitology Research, 2007; 100(2):247253.
  • 31
    Morris JG. Cholera and other types of vibriosis: A story of human pandemics and oysters on the half shell. Clinical Infectious Diseases, 2003; 37:272280.
  • 32
    Roszak DB, Colwell RR. Survival strategies of bacteria in the natural environment. Microbiology Reviews, 1987; 51:365379.
  • 33
    Oliver JD, Kaper JB. Vibrio species. Pp. 228264 in Doyle M, Beuchat LR, Montville TJ (eds). Food Microbiol: Fundamentals and Frontiers. Washington, DC: ASM Press, 1997.
  • 34
    Nishina T, Wada M, Ozawa H, Hara-Kudo Y, Konuma H, Hasegawa J, Kumagai S. Growth kinetics of Vibrio parahaemolyticus O3:K6 under varying conditions of pH, NaCl concentration and temperature. Journal of the Food Hygienic Society of Japan, 2004; 45(1):3537.
  • 35
    Fujikawa H, Kimura B, Fuji T. Development of a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Biocontrol Science 2009; 14(3):127131.
  • 36
    Zhenquan Y, Xinan J, Ping L, Zhiming P, Jinlin H, Ruixia G et al. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature. Food Microbiology, 2009; 26:606614.
  • 37
    Koh EG, Huyn JH, LaRock PA. Pertinence of indicator organisms and sampling variables to Vibrio concentrations. Applied and Environmental Microbiology, 1994; 60(10):38973900.
  • 38
    Patrick ME, Christiansen LE, Waino M, Ethelberg S, Madsen H. et al. Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Applied and Environmental Microbiology, 2004; 70(12):74747480.
  • 39
    Evers EG. Predicted quantitative effect of logistic slaughter on microbial prevalence. Preventive Veterinary Medicine, 2004; 65(1–2):3146.
  • 40
    Calistri P, Giovanni A. Quantitative risk assessment of human campylobacteriosis related to the consumption of chicken meat in two Italian regions. International Journal of Food Microbiology, 2008; 128:274278.
  • 41
    Ellerbroek LI, Lienau JA, Klein G. Campylobacter spp. in broiler flocks at farm level and the potential for cross-contamination during slaughter. Zoonoses and Public Health, 2010; 57:e81e88.
  • 42
    Nauta M, Christensen B. The impact of consumer phase models in microbial risk analysis. Risk Analysis, 31(2):255265.
  • 43
    Hijnen WAM, Beerendonk EF, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 2006; 40(1):322.
  • 44
    Schijven JF, de Roda Husman AM. Analysis of the microbiological safety of drinking water. Experiences with Handling Records 2006–7 RIVM-Report 703719038. Bilthoven, The Netherlands: National Institute of Public Health and the Environment, 2009 [in Dutch].
  • 45
    WHO. Guidelines for Drinking-Water Quality: Incorporating 1st and 2nd Addenda, 4th ed. Geneva, CH: World Health Organisation, 2011.
  • 46
    Teunis PFM, Medema GJ, Kruidenier L, Havelaar AH. Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from a surface water source. Water Research, 1997; 31(6):13331346.
  • 47
    USEPA. Economic Analysis for the Final Ground Water Rule. United States Environmental Protection Agency. EPA 815-R-06–014, 2006, Available at: http://water.epa.gov/lawsregs/rulesregs/sdwa/gwr/regulation.cfm, Accessed May 17, 2013.
  • 48
    Schets FM, Schijven JF, de Roda Husman AM. Exposure assessment for swimmers in bathing waters and swimming pools. Water Research, 2011; 45(7):23922400.
  • 49
    FDA. Quantitative Risk Assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oysters. Center for Food Safety and Applied Nutrition. Food and Drug Administration U.S. Department of Health and Human Services, 2005.
  • 50
    Teunis PFM, Moe CL, Liu P, Miller SE, Lindesmith L et al. Norwalk virus: How infectious is it? Journal of Medical Virology, 2008; 80:14681476.
  • 51
    Teunis PFM, Havelaar AH. The beta Poisson model is not a single hit model. Risk Analysis, 2000; 20:511518.
  • 52
    Ryu H, Abbaszadegan, M. Log-term study of Cryptosporidium and Giardia occurrence and quantitative microbial risk assessment. Journal of Water Health, 2008; 06(2):263273.
  • 53
    Schijven JF, Teunis PFM, Rutjes SA, Bouwknegt M, de Roda Husman AM. QMRAspot: A tool for QMRA from surface water to potable water. Water Research, 2011; 45(17):55645576.
  • 54
    Soller JA, Bartrand T, Ashbolt NJ, Ravenscroft J, Wade TJ. Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Research, 2010; 44:47364747.
  • 55
    Schets FM, Van Wijnen JH, Schijven JF, Schoon H, & de Roda Husman AM. Monitoring of waterborne pathogens in surface waters in Amsterdam, The Netherlands, and the potential health risk associated with exposure to Cryptosporidium and Giardia in these waters. Applied and Environmental Microbiology, 2008; 74(7):20692078.
  • 56
    Schets FM, Berg van den HHJL, Marchese A, Grabom S, de Roda Husman, AM. Human pathogenic vibrios in marine and fresh bathing waters related to environmental conditions and disease outcome. International Journal of Hygiene and Environmental Health, 2011; 214(5):399406.
  • 57
    Masini L, DeGrandis B, Principi F, Mengarelli C, Ottaviania D. Research and characterization of pathogenic vibrios from bathing water along the Conero Riviera (central Italy). Water Research, 2007; 41:40314040.
  • 58
    Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L et al. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Environmental Microbiology, 2009; 58(4):808818.
  • 59
    DePaola A, Jonesm JL, Woods J, Burkhardt W, Calci KR et al. Bacterial and viral pathogens in live oysters: 2007 United States Market Survey. Applied and Environmental Microbiology, 2010; 76(9):27542768.
  • 60
    Kaysner CA, Abeyta C, Stott RF, Krane MH, Wekell MM. Enumeration of Vibrio species, including V. cholerae, from samples of an oyster growing area, Grays Harbor, Washington. Journal of Food Protection, 1990; 53(4):300311.
  • 61
    Schets FM, vanden Berg HH., Rutjes SA, de Roda Husman AM. Pathogenic Vibrio species in Dutch shellfish destined for direct human consumption. Journal of Food Protection, 2010; 73(4):734738.
  • 62
    Teunis P, Havelaar A, Vliegenthart J, Roessink G. Risk assessment of Campylobacter species in shellfish: Identifying the unknown. Water Science and Technology, 1997; 35(11–12):2934.
  • 63
    Ellerbroek LI, Lienau JA, Klein G. Campylobacter spp. in broiler flocks at farm level and the potential for cross-contamination during slaughter. Zoonoses and Public Health, 2010; 57:e81e88
  • 64
    Bouwknegt M, Dam-Deisz WDC, Wannet WJB, Van Pelt W, Visser G, Van de Giessen AW. Surveillance of zoonotic bacteria in farm animals in the Netherlands: Results from January 1998 until December 2002. RIVM Report 330050001. Bilthoven, The Netherlands: National Institute of Public Health and the Environment, 2004.
  • 65
    Schijven JF, Teunis PFM, Rutjes SA, Bouwknegt M, de Roda Husman AM. QMRAspot: A tool for QMRA from surface water to potable water. Water Research, 2011; 45(17):55645576.
  • 66
    Schijven JF, Hassanizadeh SM, de Roda Husman AM. Vulnerability of unconfined aquifers to virus contamination. Water Research, 2010; 44(4):11701181.
  • 67
    Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, Kistemann T. Climate change impact assessment of food and waterborne diseases. Critical Reviews in Environmental Science and Technology, 2012; 42:857890.
  • 68
    Semenza JC, Suk JE, Estevez V, Ebi KL, Lindgren E. Mapping climate change vulnerabilities to infectious diseases in Europe. Environmental Health Perspectives, 2012; 120(3):385392.
  • 69
    Lindgren E, Andersson Y, Suk JE, Sudre B, Semenza JC. Climate change and infectious diseases: Monitoring emerging risks in Europe. Science, 2012; 336(6080):418419.
  • 70
    Semenza JC, Domanović D. Blood supply under threat. Nature Climate Change, 2013; 3:432435.