SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Teunis PFM, Havelaar AH. The Beta-Poisson dose-response model is not a single-hit model. Risk Analysis, 2000; 20:513520.
  • 2
    Haas CN. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. American Journal of Epidemiology, 1983; 118:573582.
  • 3
    Anonymous. Hazard characterization for pathogens in food and water. Geneva, Rome: World Health Organization, Food and Agricultural Organization of the United Nations, 2003.
  • 4
    Haas CN, Rose JB, Gerba CP. Quantitative microbial risk assessment. New York: John Wiley & Sons, Inc., 1999.
  • 5
    Anonymous. Risk assessments of Salmonella in eggs and broiler chickens. Geneva, Rome: World Health Organization, Food and Agricultural Organization of the United Nations, 2002.
  • 6
    Teunis PF, Ogden ID, Strachan NJ. Hierarchical dose response of E. coli O157:H7 from human outbreaks incorporating heterogeneity in exposure. Epidemiology & Infection, 2008; 136:761770.
  • 7
    Strachan NJ, Doyle MP, Kasuga F, Rotariu O, Ogden ID. Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. International Journal of Food Microbiology, 2005; 103:3547.
  • 8
    Swart AN, Tomasi M, Kretzschmar M, Havelaar AH, Diekmann O. The protective effects of temporary immunity under imposed infection pressure. Epidemics, 2012; 4:4347.
  • 9
    Abramowitz M, Stegun IA. Handbook of mathematical functions. New York: Dover Publications, 1965.
  • 10
    Evers EG, Van Der Fels-Klerx HJ, Nauta MJ, Schijven JF, Havelaar AH. Campylobacter source attribution by exposure assessment. International Journal of Risk Assessment and Management, 2008; 8:174190.
  • 11
    Nauta MJ, Jacobs-Reitsma WF, Evers EG, Van Pelt W, Havelaar AH. Risk assessment of Campylobacter in the Netherlands via broiler meat and other routes. Bilthoven: National Institute for Public Health and the Environment Report No.: 250911006.
  • 12
    R Development Core Team. R: A language and environment for statistical computing. In Series R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2012.
  • 13
    Havelaar AH, Haagsma JA, Mangen MJ, Kemmeren JM, Verhoef LP, Vijgen SM, Wilson M, Friesema IH, Kortbeek LM, van Duynhoven YT, van Pelt W. Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology, 2012; 156:231238.
  • 14
    Schijven JF, Teunis PF, Rutjes SA, Bouwknegt M, de Roda Husman AM. QMRAspot: A tool for quantitative microbial risk assessment from surface water to potable water. Water Research, 2011; 45:55645576.
  • 15
    Rieu E, Duhem K, Vindel E, Sanaa M. Food safety objectives should integrate the variability of the concentration of pathogen. Risk Analysis, 2007; 27:37386.
  • 16
    Tribble DR, Baqar S, Scott DA, Oplinger ML, Trespalacios F, Rollins D, Walker RI, Clements JD, Walz S, Gibbs P, Burg EF, Moran AP, Applebee L, Bourgeois AL. Assessment of the duration of protection in Campylobacter jejuni experimental infection in humans. Infection and Immunity, 2010; 78:17501759.
  • 17
    Teunis PFM, Nagelkerke NJD, Haas CN. Dose response models for infectious gastroenteritis. Risk Analysis, 1999; 19:12511260.
  • 18
    Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. Journal of Infectious Diseases, 1988; 157:472479.
  • 19
    Evers EG, Van der Fels-Klerx HJ, Havelaar AH, Nauta MJ, Schijven JF. Het relatieve belang van Campylobacter transmissieroutes op basis van blootstellingsschatting. Bilthoven: Rijksinstituut voor Volksgezondheid en Milieu Report No.: 250911004.
  • 20
    Bouwknegt M, Knol AB, van der Sluijs JP, Evers EG. Uncertainty of population risk estimates for pathogens based on QMRA or epidemiology: A case study of Campylobacter in the Netherlands. Risk Analysis, 2013.
  • 21
    O'Leary MC, Harding O, Fisher L, Cowden J. A continuous common-source outbreak of campylobacteriosis associated with changes to the preparation of chicken liver pate. Epidemiology & Infection, 2009; 137(3):383388.
  • 22
    Little CL, Gormley FJ, Rawal N, Richardson JF. A recipe for disaster: Outbreaks of campylobacteriosis associated with poultry liver pate in England and Wales. Epidemiology & Infection, 2010; 138(12):16911694.
  • 23
    Edwards DS, Milne LM, Morrow K, Sheridan P, Verlander NQ, Mulla R, Richardson JF, Pender A, Lilley M, Reacher M. Campylobacteriosis outbreak associated with consumption of undercooked chicken liver pate in the east of England, September 2011: Identification of a dose-response risk. Epidemiology & Infection, 2014; 142(2):352357.
  • 24
    Centers for Disease Control and Prevention. Multistate outbreak of Campylobacter jejuni infections associated with undercooked chicken livers—Northeastern United States, 2012. Morbidity and Mortality Weekly Report, 2013; 62(44):874876.
  • 25
    Strachan NJ, MacRae M, Thomson A, Rotariu O, Ogden ID, Forbes KJ. Source attribution, prevalence and enumeration of Campylobacter spp. from retail liver. International Journal of Food Microbiology, 2012; 153(1–2):234236.
  • 26
    Teunis P, van Eijkeren J, Ang C, van Duynhoven Y, Simonsen J, Strid M, van Pelt W. Biomarker dynamics: Estimating infection rates from serological data. Statistics in Medicine, 2012; 31:22402248.
  • 27
    Nauta MJ, Jacobs-Reitsma WF, Havelaar AH. A risk assessment model for campylobacter in broiler meat. Risk Analysis, 2007; 27(4):845861.