SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (eds B. N. Petrov and F. Csàki, pp. 267281. Budapest: Akademiai Kiàdo.
  • Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723.
  • Bogdan, M., Ghosh, J. K. and Doerge, R. W. (2004) Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics, 167, 989999.
  • Bozdogan, H. (1987) Model selection and Akaike's information criterion (AIC): the general theory and its anal ytical extensions. Psychometrika, 52, 345370.
  • Bozdogan, H. (2000) Akaike's information criterion and recent developments in information complexity. J. Math. Psychol., 44, 6291.
  • Burnham, K. P. and Anderson, D. R. (1998) Model Selection and Inference: a Practical Information-theoretic Approach. New York: Springer.
  • Casella, G., Girón, F. J., Martĺnez, M. L. and Moreno, E. (2009) Consistency of Bayesian procedures for variable selection. Ann. Statist., 37, 12071228.
  • Cavanaugh, J. E. and Neath, A. A. (1999) Generalizing the derivation of the Schwarz information criterion. Communs Statist. Theor. Meth., 28, 4966.
  • Chen, J. and Chen, Z. (2008) Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95, 759771.
  • DasGupta, A. (2008) Asymptotic Theory of Statistics and Probability. New York: Springer.
  • Efron, B. (1979) Bootstrap methods: another look at the jackknife. Ann. Statist., 7, 126.
  • Fahrmeir, L. and Kaufmann, H. (1985) Consistency and asymptotic normality of the maximum likelihood estima tor in generalized linear models. Ann. Statist., 13, 342368.
  • Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Statist. Soc. B, 70, 849911.
  • Fan, J. and Lv, J. (2010) A selective overview of variable selection in high dimensional feature space. Statist. Sin., 20, 101148.
  • Fan, J. and Lv, J. (2011) Nonconcave penalized likelihood with NP-dimensionality. IEEE Trans. Inform. Theor., 57, 54675484.
  • Fan, Y. and Tang, C. (2013) Tuning parameter selection in high dimensional penalized likelihood. J. R. Statist. Soc. B, 75,531552.
  • Foster, D. and George, E. (1994) The risk inflation criterion for multiple regression. Ann. Statist., 22, 19471975.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004) Bayesian Data Analysis, 2nd edn. Boca Raton: Chapman and Hall–CRC.
  • Hall, P. (1990) Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theor. Reltd Flds, 85, 449467.
  • Hosking, J. R. M. (1980) Lagrange-multiplier tests of time-series models. J. R. Statist. Soc. B, 42, 170181.
  • Konishi, S. and Kitagawa, G. (1996) Generalised information criterion in model selection. Biometrika, 83, 875890.
  • Kullback, S. and Leibler, R. (1951) On information and sufficiency. Ann. Math. Statist., 22, 7986.
  • Liu, W. and Yang, Y. (2011) Parametric or nonparametric?: a parametricness index for model selection. Ann. Statist., 39, 20742102.
  • Lv, J. and Fan, Y. (2009) A unified approach to model selection and sparse recovery using regularized least squares. Ann. Statist., 37, 34983528.
  • Lv, J. and Liu, J. S. (2010) Model selection principles in misspecified models. arXiv Preprint math.ST/1005.5483.
  • McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
  • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461464.
  • Shibata, R. (1989) Statistical aspects of model selection. In From Data to Model (ed. J. C. Willems), pp. 215240. New York: Springer.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583639.
  • Stone, M. (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. R. Statist. Soc. B, 39, 4447.
  • Takeuchi, K. (1976) Distribution of information statistics and criteria for adequacy of models (in Japanese). Math. Sci., 153, 1218.
  • Tian, L., Cai, T., Goetghebeur, E. and Wei, L. J. (2007) Model evaluation based on the sampling distribution of estimated absolute prediction error. Biometrika, 94, 297311.
  • Wang, H., Li, R. and Tsai, C.-L. (2007) Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika, 94, 553568.
  • White, H. (1982) Maximum likelihood estimation of misspecified models. Econometrica, 50, 125.
  • Yang, Y. and Barron, A. R. (1998) An asymptotic property of model selection criteria. IEEE Trans. Inform. Theor., 44, 95116.
  • inline imageak-Szatkowska, M. and Bogdan, M. (2011) Modified versions of Bayesian information criterion for sparse generalized linear models. Computnl Statist. Data Anal., 55, 29082924.