SEARCH

SEARCH BY CITATION

References

  • Bai, Y., Calisher, C. H., Kosoy, M. Y., Root, J. J. and Doty, J. B. (2011) Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis. Appl. Environ. Microbiol., 77, 17281731.
  • Baum, I. E., Petrie, Y., Soules, G. and Weiss, N. (1970) A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41, 164171.
  • Begon, M., Telfer, S., Burthe, S. J., Lambin, X., Smith, J. M. and Paterson, S. (2009) Effects of abundance on infection in natural populations: field voles and cowpox virus. Epidemics, 1, 3546.
  • Bennett, M., Crouch, A. J., Begon, M., Duffy, B., Feore, S., Gaskell, R. M., Kelly, D. F., McCracken, C. M., Vicary, L. and Baxby, D. (1997) Cowpox in British voles and mice. J. Compar. Path., 116, 3544.
  • Birtles, R. J., Hazel, S. M., Bennett, M., Bown, K., Raoult, D. and Begon, M. (2001) Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. Epidem. Infectn, 126, 323329.
  • Bown, K. J., Bennett, M. and Begon, M. (2004) Flea-borne Bartonella grahamii and Bartonella taylorii in Bank Voles. Emergng Infect. Dis., 10, 684687.
  • Bown, K. J., Lambin, X., Telford, G. R., Ogden, N. H., Telfer, S., Woldehiwet, Z. and Birtles, R. J. (2008) Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl. Environ. Microbiol., 74, 71187125.
  • Brand, M. (1997) Coupled hidden Markov Models for modelling interacting processes. Technical Report 405. Massachusetts Institute of Technology Media Laboratory, Cambridge.
  • Burthe, S. J., Lambin, X., Telfer, S., Douglas, A., Beldomenico, P., Smith, A. and Begon, M. (2009) Individual growth rates in natural field voles, Microtus agrestis, populations exhibiting cyclic population dynamics. Oecologia, 162, 653661.
  • Chadeau-Hyam, M., Clarke, P. S., Guihenneuc-Jouyaux, C., Cousens, S. N., Will, R. G. and Ghani, A. C. (2010) An application of hidden Markov models to the French variant Creutzfeldt–Jakob disease epidemic. Appl. Statist., 59, 839853.
  • Chantrey, J., Meyer, H., Baxby, D., Begon, M., Bown, K. J., Hazel, S. M., Jones, T., Montgomery, W. I. and Bennett, M. (1999) Cowpox: reservoir hosts and geographic range. Epidem. Infectn, 122, 455460.
  • Chib, S. (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J. Econmetr., 75, 7997.
  • Collett, D. (2003) Modelling Binary Data. Boca Raton: Chapman and Hall–CRC.
  • Courtney, J. W. L., Kostelnik, M., Zeidner, N. S. and Massung, R. F. (2004) Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol., 42, 31643168.
  • Daniels, M. J. and Hogan, J. W. (2008) Missing Data in Longitudinal Data: Strategies for Bayesian Modelling and Sensitivity Analysis. Boca Raton: Chapman and Hall–CRC.
  • Fearnhead, P. and Sherlock, C. (2006) An exact Gibbs sampler for the Markov-modulated Poisson process. J. R. Statist. Soc. B, 68, 767784.
  • Gelman, A. (1996) Inference and monitoring convergence. In Markov Chain Monte Carlo in Practice (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter). London: Chapman and Hall.
  • Gelman, A. and Rubin, D. (1992) Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457472.
  • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds) (1996) Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
  • Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711732.
  • Guédon, Y. (2003) Estimating hidden semi-Markov chains from discrete sequences. J. Computnl Graph Statist., 12, 604639.
  • Guihenneuc-Jouyaux, C., Richardson, S. and Longini, I. M. (2000) Modelling markers of disease progression by a hidden Markov process: application to characterising CD4 cell decline. Biometrics, 56, 733741.
  • Kosoy, M., Mandel, E., Green, D., Marston, E. and Childs, J. (2004) Prospective studies of Bartonella of rodents: part I, Demographic and temporal patterns in population dynamics. Vect. Borne Zoonotic Dis., 4, 285295.
  • Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. and Sheldon, B. C. (2011) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol., 80, 12071216.
  • Natarajan, P. and Nevatia, R. (2007) Coupled hidden semi Markov models for activity recognition. Institute of Electrical and Electronics Engineers Wrkshp Motion and Video Computing.
  • Pradel, R. (2005) Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442447.
  • Rabiner, L. R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257286.
  • R Development Core Team (2012) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Rezek, I., Sykacek, P. and Roberts, S. J. (2000) Learning interaction dynamics with couple hidden Markov models. IEE Proc. Sci. Measmnt Technol., 147, 345350.
  • Robert, C. P., Celeux, G. and Diebolt, J. (1993) Bayesian estimation of hidden Markov chains: a stochastic implementation. Statist. Probab. Lett., 16, 7783.
  • Robert, C. P., Rydén, G. and Titterington, D. M. (1999) Convergence controls for MCMC algorithms, with application to hidden Markov chains. J. Statist. Computn Simuln, 64, 327355.
  • Robert, C. P. and Titterington, D. M. (1998) Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation. Statist. Comput., 8, 145158.
  • Roberts, G. O. and Rosenthal, J. (2001) Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci., 16, 351367.
  • Saul, K. and Jordan, M. (1999) Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones. Mach. Learn., 37, 7587.
  • Scott, S. L. (2002) Bayesian methods for hidden Markov models: recursive computing in the 21th century. J. Am. Statist. Ass., 97, 337351.
  • Sherlock, C., Fearnhead, P. and Roberts, G. O. (2010) The random walk Metropolis: linking theory and practice through a case study. Statist. Sci., 28, 172190.
  • Sherlock, C. and Roberts, G. (2009) Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli, 15, 774798.
  • Telfer, S., Begon, M., Bennett, M., Bown, K., Burthe, S., Lambin, X., Telford, G. and Birtles, R. (2007) Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology, 134, 413425.
  • Telfer, S., Birtles, R., Bennett, M., Lambin, X., Paterson, S. and Begon, M. (2008) Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 135, 767781.
  • Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S. J., Paterson, S. and Begon, M. (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science, 330, 243246.
  • Xifara, T. D. (2012) A hidden Markov model for disease interactions in field voles. Technical Report. Depart ment of Mathematics and Statistics, Lancaster University, Lancaster. (Available from http://www.math.lancs.ac.uk/~xifara.)
  • Zhong, S. and Ghosh, J. (2002) HMMs and coupled HMMs for multi-channel EEG classification. In Proc. Int. Jt Conf. Neural Networks, pp. 11541159. New York: Institute of Electrical and Electronics Engineers.
  • Zucchini, W. and MacDonald, I. L. (2009) Hidden Markov Models for Time Series: an Introduction using R. New York: Chapman and Hall–CRC.