SEARCH

SEARCH BY CITATION

References

  • Akita, Y., Carter, G. and Serre, M. L. (2007) Spatiotemporal nonattainment assessment of surface water tetrachloroethylene in New Jersey. J. Environ. Qual., 36, 508520.
  • de Boor, C. (1978) A Practical Guide to Splines. New York: Springer.
  • Bowman, A. and Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis. Oxford: Oxford University Press.
  • Bowman, A., Crawford, E., Alexander, G. and Bowman, R. W. (2007) rpanel: simple interactive controls for r functions using the tcltk package. J. Statist. Softwr., 17, 118.
  • Bowman, A. W., Giannitrapani, M. and Scott, E. M. (2009) Spatiotemporal smoothing and sulphur dioxide trends over Europe. Appl. Statist., 58, 737752.
  • Brown, P. E., Diggle, P. J., Lord, M. E. and Young, P. C. (2001) Space–time calibration of radar rainfall data. Appl. Statist., 50, 221241.
  • Clement, L. and Thas, O. (2007) Spatio-temporal statistical models for river monitoring networks. J. Agric. Biol. Environ. Statist., 12, 161176.
  • Cressie, N., Frey, J., Harch, B. and Smith, M. (2006) Spatial prediction on a river network. J. Agric. Biol. Environ. Statist., 11, 127150.
  • Cressie, N. and Majure, J. J. (1997) Spatio-temporal statistical modeling of livestock waste in streams. J. Agric. Biol. Environ. Statist., 2, 2447.
  • Cressie, N. and O'Donnell, D. (2010) Comment: Statistical dependence in stream networks. J. Am. Statist. Ass., 105, 1821.
  • Cressie, N. and Wikle, C. K. (2011) Statistics for Spatio-temporal Data. New York: Wiley.
  • Eilers, P., Currie, I. and Durbán, M. (2006) Fast and compact smoothing on large multidimensional grids. Computnl Statist. Data Anal., 50, 6176.
  • Eilers, P. and Marx, B. (1996) Flexible smoothing with b-splines and penalties. Statist. Sci., 11, 89102.
  • Eilers, P. and Marx, B. (2002) Generalized linear additive smooth structures. J. Computnl Graph. Statist., 11, 758783.
  • Fahrmeir, L. and Lang, S. (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Statist., 50, 201220.
  • Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Applications. London: Chapman and Hall.
  • Fellows, I. (2012) OpenStreetMap: access to open street map raster images. R Package Version 0.2. (Available from http://CRAN.Rproject.org/package=OpenStreetMap.)
  • Gardner, K. K. and McGlynn, B. L. (2009) Seasonality in spatial variability and influence of land use/land cover and watershed characteristics on stream water nitrate concentrations in a developing watershed in the rocky mountain west. Wat. Resour. Res., 45, article W08411.
  • Gardner, B., Sullivan, P. and Lembo, A. (2003) Predicting stream temperatures: geostatistical model comparison using alternative distance metrics. Can. J. Fish. Aquat. Sci., 60, 344351.
  • Garreta, V., Monestiez, P. and Hoef, J. M. V. (2010) Spatial modelling and prediction on river networks: up model, down model or hybrid? Environmetrics, 21, 439456.
  • Giannitrapani, M., Bowman, A. and Scott, E. (2011) Additive models for correlated data with applications to air pollution monitoring. In Statistical Methods for Trend Detection and Analysis in the Environmental Sciences (eds R. Chandler and E. Scott), ch. 7, pp. 267282. Chichester: Wiley.
  • Guttorp, P., Meiring, W. and Sampson, P. (1994) A space-time analysis of ground-level ozone data. Environmetrics, 5, 241254.
  • Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. London: Chapman and Hall.
  • Huang, H. and Cressie, N. (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Computnl Statist. Data Anal., 22, 159175.
  • Hurvich, C. M., Simonoff, J. S. and Tsai, C.-L. (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Statist. Soc. B, 60, 271293.
  • Kammann, E. E. and Wand, M. P. (2003) Geoadditive models. Appl. Statist., 52, 118.
  • Marx, B. and Eilers, P. (1998) Direct generalized additive modeling with penalized likelihood. Computnl Statist. Data Anal., 28, 193209.
  • Money, E., Carter, G. P. and Serre, M. L. (2009) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Wat. Res., 43, 19481958.
  • O'Donnell, D. (2012) Spatial prediction and spatio-temporal modelling on river networks. PhD Thesis. University of Glasgow, Glasgow.
  • Peterson, E. E., Merton, A. A., Theobald, D. M. and Urquhart, N. S. (2006) Patterns of spatial autocorrelation in stream water chemistry. Environ. Monit. Assessmnt, 121, 571596.
  • Peterson, E. E. and Urquhart, N. S. (2006) Predicting water quality impaired stream segments using landscape-scale data and a regional geostatistical model: a case study in Maryland. Environ. Monit. Assessmnt, 121, 615638.
  • Peterson, E. E. and Ver Hoef, J. M. (2010) A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology, 91, 644651.
  • R Development Core Team (2011) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Reyjol, Y., Fischer, P., Lek, S., Rosch, R. and Eckmann, R. (2005) Studying the spatiotemporal variation of the littoral fish community in a large prealpine lake, using self-organizing mapping. Can. J. Fish. Aquat. Sci., 62, 22942302.
  • Ruppert, D., Wand, M. P. and Carroll, R. (2003) Semiparametric Regression. London: Cambridge University Press.
  • Schimek, M. G. (ed.) (2000) Smoothing and Regression: Approaches, Computation, and Application.New York: Wiley.
  • Shaddick, G. and Wakefield, J. (2002) Modelling daily multivariate pollutant data at multiple sites. Appl. Statist., 51, 351372.
  • Thorp, J., Thoms, M. and Delong, M. (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. Riv. Res. Applic., 22, 123147.
  • Ver Hoef, J. M. and Peterson, E. E. (2010) A moving average approach for spatial statistical models of stream networks. J. Am. Statist. Ass., 105, 618.
  • Ver Hoef, J. M., Peterson, E. and Theobald, D. (2006) Spatial statistical models that use flow and stream distance. Environ. Ecol. Statist., 13, 449464.
  • Wood, S. (2006) Generalized Additive Models: an Introduction with R. London: Chapman and Hall–CRC.