SEARCH

SEARCH BY CITATION

References

  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004) Hierarchical Modeling and Analysis for Spatial Data. Boca Raton: Chapman and Hall–CRC.
  • Calder, C. A. (2008) A dynamic process convolution approach to modeling ambient particular matter concentrations. Environmetrics, 19, 3948.
  • Cooley, D., Nychka, D. and Naveau, P. (2007) Bayesian spatial modelling of extreme precipitation return levels. J. Am. Statist. Ass., 102, 824840.
  • Cressie, N. and Johannesson, G. (2006) Fixed rank kriging for large spatial datasets. Technical Report. Department of Statistics, Ohio State University, Columbus.
  • Fuentes, M. (2002) Spectral methods for nonstationary spatial processes. Biometrika, 89, 197210.
  • Gamerman, D. and Lopes, H. F. (2006) Markov Chain Monte Carlo—Stochastic Simulation for Bayesian Inference, 2nd edn. Boca Raton: Chapman and Hall.
  • Gelfand, A. E. and Ghosh, S. K. (1998) Model choice: a minimum posterior predictive loss approach. Biometrika, 85, 111.
  • Gelfand, A. E., Schmidt, A. M., Banerjee, S. and Sirmans, C. F. (2004) Non stationary multivariate process modeling through spatially varying coregionalization (with discussion). Test, 13, 150.
  • Higdon, D. (1998) A process-convolution approach to modelling temperatures in the north Atlantic ocean. Environ. Ecol. Statist., 5, 173190.
  • Higdon, D. (2002) Space and space-time modeling using process convolutions. In Quantitative Methods for Current Environmental Issues, pp. 3756. Berlin: Springer.
  • Higdon, D., Swall, J. and Kern, J. (1999) Non-stationary spatial modeling. Baysn Statist., 6, 761768.
  • Lee, H. K. H., Higdon, D. M., Calder, C. A. and Holloman, C. H. (2005) Efficient models for correlated data via convolutions of intrinsic processes. Statist. Modllng, 5, 5374.
  • Matérn, B. (1986) Spatial Variation, 2nd edn. Berlin: Springer.
  • Paciorek, C. J. and Schervish, M. J. (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17, 483506.
  • Reich, B., Eidvisk, J., Guindani, M., Nail, A. J. and Schmidt, A. M. (2011) A class of covariate-dependent spatiotemporal covariance functions. Ann. Appl. Statist., 5, 24252447.
  • Sansó, B. and Guenni, L. (2004) A Bayesian approach to compare observed rainfall data to deterministic simulations. Environmetrics, 15, 597612.
  • Schmidt, A. M., Guttorp, P. and O'Hagan, A. (2011) Considering covariates in the covariance structure of spatial processes. Environmetrics, 22, 487500.
  • Schmidt, A. M. and O'Hagan, A. (2003) Bayesian inference for non-stationary spatial covariance structures via spatial deformations. J. R. Statist. Soc. B, 65, 743758.
  • Schmidt, A. M. and Rodrı'guez, M. A. (2011) Modelling multivariate counts varying continuously in space (with discussion). InBayesian Statistics 9(eds J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West), pp. 611638. Oxford: Oxford University Press.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583639.
  • Thiébaux, H. J. and Pedder, M. A. (1987) Spatial Objective Analysis: with Applications in Atmospheric Science. New York: Academic Press.
  • Ver Hoef, J. M., Peterson, E. and Theobald, D. (2006) Spatial statistical models that use flow and stream distance. Environ. Ecol. Statist., 13, 449464.
  • Wikle, C. K., Milliff, R. F., Nychka, D. and Berliner, L. M. (2001) Spatio-temporal hierarchical Bayesian modeling: tropical ocean surface winds. J. Am. Statist. Ass., 96, 382397.