Increased Bronchial Density of CD25+Foxp3+ Regulatory T Cells in Occupational Asthma: Relationship to Current Smoking

Authors


Correspondence to: T. S. Halstensen MD, PhD, Laboratory for mucosal immunology (LMI), IOB, University of Oslo, Pb. 1052 Blindern, 0316 Oslo, Norway. E-mail: trondsh@rh.uio.no

Abstract

To identify activated T cell subset in the asthmatic bronchia, we developed a triple-colour immunohistofluorescence labelling technique on cryo-section to discriminate activated CD4+CD25+ T cells, (effector T cells) from Foxp3+ regulatory T cells (Treg). Additional coexpression of activation and proliferation markers was also examined in situ. Bronchial biopsies were taken from 20 aluminium potroom workers (12 smokers) with asthma (>12% reversibility), 15 non-asthmatic potroom workers (7 smokers) and 10 non-smoking, non-exposed controls. Non-smoking asthmatics had significantly higher subepithelial density of both Tregs, effector T cells, activated (HLA-DR+) CD8+ and activated CD4+ T cells. Moreover, both Tregs, effector T cells and CD8+ T cells proliferated in the non-smoking asthmatics, only. Although smoking asthmatics had no asthma-associated increase in bronchial T cell, both had a significantly increase in effector T cell to Treg ratios. The significantly increased bronchial density of Tregs, effector T cells, proliferative T cells and activated CD8+ T cells in non-smoking asthmatics clearly showed that both the effector T cells and the inhibitory Treg system were activated in asthma.

Ancillary