SEARCH

SEARCH BY CITATION

References

  • 1
    Ortutay C, Nore BF, Vihinen M, Smith CIE. Phylogeny of Tec family kinases identification of a premetazoan origin of Btk, Bmx, Itk, Tec, Txk, and the Btk regulator SH3BP5. Adv Genet 2008;64:5180.
  • 2
    Nawaz HM, Kylsten P, Hamada N, Yamamoto D, Smith CIE, Lindvall JM. Differential evolutionary wiring of the tyrosine kinase Btk. PLoS ONE 2012;7:e35640.
  • 3
    Wu F, Zhao J, Chen L et al. A novel BTK-like protein involved in immune response in Lethenteron japonicum. Immunol Lett 2012;146:5763.
  • 4
    Smith CIE, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M. The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. BioEssays 2001;23:43646.
  • 5
    Gomez-Rodriguez J, Kraus ZJ, Schwartzberg PL. Tec family kinases Itk and Rlk / Txk in T lymphocytes: cross-regulation of cytokine production and T-cell fates. FEBS J 2011;278:19809.
  • 6
    Qi Q, Kannan AK, August A. Tec family kinases: Itk signaling and the development of NKT alphabeta and gammadelta T cells. FEBS J 2011;278:19709.
  • 7
    Hyvonen M, Saraste M. Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 1997;16:3396404.
  • 8
    Vihinen M, Nilsson L, Smith CIE. Tec homology (TH) adjacent to the PH domain. FEBS Lett 1994;350:2635.
  • 9
    Vihinen M, Nore BF, Mattsson PT et al. Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. FEBS Lett 1997;413:20510.
  • 10
    Heyeck SD, Berg LJ. Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk. Proc Natl Acad Sci USA 1993;90:66973.
  • 11
    Siliciano JD, Morrow TA, Desiderio SV. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 1992;89:111948.
  • 12
    Tsukada S, Saffran DC, Rawlings DJ et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. 1993. J Immunol 2012;188:293647.
  • 13
    Vetrie D, Vorechovsky I, Sideras P et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993;361:22633.
  • 14
    Conley ME, Dobbs AK, Farmer DM et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol 2009;27:199227.
  • 15
    Holinski-Feder E, Weiss M, Brandau O et al. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics 1998;101:27684.
  • 16
    Lindvall JM, Blomberg KE, Valiaho J et al. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 2005;203:20015.
  • 17
    Valiaho J, Smith CIE, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat 2006;27:120917.
  • 18
    Rawlings DJ, Saffran DC, Tsukada S et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 1993;261:35861.
  • 19
    Thomas JD, Sideras P, Smith CIE, Vorechovsky I, Chapman V, Paul WE. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 1993;261:3558.
  • 20
    Ellmeier W, Jung S, Sunshine MJ et al. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J Exp Med 2000;192:161124.
  • 21
    Huck K, Feyen O, Niehues T et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 2009;119:13508.
  • 22
    Smith CIE, Baskin B, Humire-Greiff P et al. Expression of Bruton's agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol 1994;152:55765.
  • 23
    Nomura K, Kanegane H, Karasuyama H et al. Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood 2000;96:6107.
  • 24
    Noordzij JG, de Bruin-Versteeg S, Comans-Bitter WM et al. Composition of precursor B-cell compartment in bone marrow from patients with X-linked agammaglobulinemia compared with healthy children. Pediatr Res 2002;51:15968.
  • 25
    Wood PM, Mayne A, Joyce H, Smith CIE, Granoff DM, Kumararatne DS. A mutation in Bruton's tyrosine kinase as a cause of selective anti-polysaccharide antibody deficiency. J Pediatr 2001;139:14851.
  • 26
    Liao XC, Littman DR. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 1995;3:75769.
  • 27
    Hussain A, Yu L, Faryal R, Mohammad DK, Mohamed AJ, Smith CIE. TEC family kinases in health and disease–loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J 2011;278:200110.
  • 28
    Linka RM, Risse SL, Bienemann K et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012;26:96371.
  • 29
    Readinger JA, Schiralli GM, Jiang JK et al. Selective targeting of ITK blocks multiple steps of HIV replication. Proc Natl Acad Sci USA 2008;105:66849.
  • 30
    Mueller C, August A. Attenuation of immunological symptoms of allergic asthma in mice lacking the tyrosine kinase ITK. J Immunol 2003;170:505663.
  • 31
    Ohashi PS. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat Rev Immunol 2002;2:42738.
  • 32
    Hong JC, Kahan BD. Immunosuppressive agents in organ transplantation: past, present, and future. Semin Nephrol 2000;20:10825.
  • 33
    Qiu Y, Kung HJ. Signaling network of the Btk family kinases. Oncogene 2000;19:565161.
  • 34
    Nore BF, Vargas L, Mohamed AJ et al. Redistribution of Bruton's tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. Eur J Immunol 2000;30:14554.
  • 35
    Miller AT, Berg LJ. New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Curr Opin Immunol 2002;14:33140.
  • 36
    Reth M, Brummer T. Feedback regulation of lymphocyte signalling. Nat Rev Immunol 2004;4:26977.
  • 37
    Gustafsson MO, Hussain A, Mohammad DK et al. Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012;32:244053.
  • 38
    Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CIE. Nucleocytoplasmic shuttling of Bruton's tyrosine kinase. J Biol Chem 2000;275:406149.
  • 39
    Mohammad DK, Nore BF, Hussain A, Gustafsson MO, Mohamed AJ, Smith EC. Dual phosphorylation of Btk by Akt/PKB Provides Docking for 14-3-3ζ, Regulates Shuttling and Attenuates both Tonic and Induced Signaling in B Cells. Mol Cell Biol. 2013 Jun 10. [Epub ahead of print] PMID: 23754751.
  • 40
    Yang Y, Shaffer AL 3rd, Emre NC et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 2012;21:72337.
  • 41
    Mahajan S, Ghosh S, Sudbeck EA et al. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 1999;274:958799.
  • 42
    Ghosh S, Uckun FM. Alpha-cyano-N-(2,5-dibromophenyl)-beta-hydroxybut-2-enamide. Acta Crystallogr C 1999;55(Pt 8):13645.
  • 43
    van den Akker E, van Dijk TB, Schmidt U et al. The Btk inhibitor LFM-A13 is a potent inhibitor of Jak2 kinase activity. Biol Chem 2004;385:40913.
  • 44
    Uckun FM, Zheng Y, Cetkovic-Cvrlje M et al. In vivo pharmacokinetic features, toxicity profile, and chemosensitizing activity of alpha-cyano-beta-hydroxy-beta- methyl-N-(2,5-dibromophenyl)propenamide (LFM-A13), a novel antileukemic agent targeting Bruton's tyrosine kinase. Clin Cancer Res 2002;8:122433.
  • 45
    Uckun FM, Vassilev A, Bartell S, Zheng Y, Mahajan S, Tibbles HE. The anti-leukemic Bruton's tyrosine kinase inhibitor alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl) propenamide (LFM-A13) prevents fatal thromboembolism. Leuk Lymphoma 2003;44:156977.
  • 46
    Tibbles HE, Samuel P, Erbeck D, Mahajan S, Uckun FM. In vivo toxicity and antithrombotic profile of the oral formulation of the antileukemic agent, LFM-A13-F. Arzneimittelforschung 2004;54:3309.
  • 47
    Uckun FM, Dibirdik I, Qazi S et al. Anti-breast cancer activity of LFM-A13, a potent inhibitor of Polo-like kinase (PLK). Bioorg Med Chem 2007;15:80014.
  • 48
    Cetkovic-Cvrlje M, Uckun FM. Dual targeting of Bruton's tyrosine kinase and Janus kinase 3 with rationally designed inhibitors prevents graft-versus-host disease (GVHD) in a murine allogeneic bone marrow transplantation model. Br J Haematol 2004;126:8217.
  • 49
    Doyle SL, Jefferies CA, O'Neill LA. Bruton's tyrosine kinase is involved in p65-mediated transactivation and phosphorylation of p65 on serine 536 during NFkappaB activation by lipopolysaccharide. J Biol Chem 2005;280:23496501.
  • 50
    Redondo PC, Ben-Amor N, Salido GM, Bartegi A, Pariente JA, Rosado JA. Ca2 + -independent activation of Bruton's tyrosine kinase is required for store-mediated Ca2 +  entry in human platelets. Cell Signal 2005;17:101121.
  • 51
    Olsson S, Sundler R. Different roles for non-receptor tyrosine kinases in arachidonate release induced by zymosan and Staphylococcus aureus in macrophages. J Inflamm (Lond) 2006;3:8.
  • 52
    Gilbert C, Levasseur S, Desaulniers P et al. Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. II. Effects of LFM-A13, a specific Btk inhibitor. J Immunol 2003;170:523543.
  • 53
    Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O'Neill LA. MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 2006;281:1048995.
  • 54
    Vijayan V, Baumgart-Vogt E, Naidu S, Qian G, Immenschuh S. Bruton's tyrosine kinase is required for TLR-dependent heme oxygenase-1 gene activation via Nrf2 in macrophages. J Immunol 2011;187:81727.
  • 55
    Susaki K, Kitanaka A, Dobashi H et al. Tec protein tyrosine kinase inhibits CD25 expression in human T-lymphocyte. Immunol Lett 2010;127:13542.
  • 56
    Bam R, Ling W, Khan S et al. Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease. Am J Hematol 2013;88:46371.
  • 57
    Uckun FM. Clinical potential of targeting Bruton's tyrosine kinase. Int Rev Immunol 2008;27:4369.
  • 58
    Lombardo LJ, Lee FY, Chen P et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004;47:665861.
  • 59
    Santos FP, Cortes J. Dasatinib for the treatment of Philadelphia chromosome-positive leukemias. Expert Opin Pharmacother 2012;13:238195.
  • 60
    Somlo G, Atzori F, Strauss LC et al. Dasatinib plus capecitabine for advanced breast cancer: safety and efficacy in phase I study CA180004. Clin Cancer Res 2013;19:188493.
  • 61
    Araujo JC, Mathew P, Armstrong AJ et al. Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1–2 study. Cancer 2012;118:6371.
  • 62
    Rix U, Hantschel O, Durnberger G et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007;110:405563.
  • 63
    Bantscheff M, Eberhard D, Abraham Y et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007;25:103544.
  • 64
    Hantschel O, Rix U, Schmidt U et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007;104:132838.
  • 65
    Contri A, Brunati AM, Trentin L et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 2005;115:36978.
  • 66
    Amrein PC, Attar EC, Takvorian T et al. Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 2011;17:297786.
  • 67
    Veldurthy A, Patz M, Hagist S et al. The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes. Blood 2008;112:144352.
  • 68
    Herrmann H, Blatt K, Ghanim V et al. Glucocorticosteroids rescue basophils from dasatinib-augmented immunoglobulin E-mediated histamine release. Int Arch Allergy Immunol 2012;159:1522.
  • 69
    Das J, Chen P, Norris D et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 2006;49:681932.
  • 70
    Sillaber C, Herrmann H, Bennett K et al. Immunosuppression and atypical infections in CML patients treated with dasatinib at 140 mg daily. Eur J Clin Invest 2009;39:1098109.
  • 71
    Kneidinger M, Schmidt U, Rix U et al. The effects of dasatinib on IgE receptor-dependent activation and histamine release in human basophils. Blood 2008;111:3097107.
  • 72
    Burger JA, Buggy JJ. Emerging drug profiles: Bruton tyrosine kinase (BTK) inhibitor ibrutinib (PCI-32765). Leuk Lymphoma 2013;doi:10.3109/10428194.2013.777837. [Epub ahead of print].
  • 73
    Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol 2012;31:11932.
  • 74
    Dasmahapatra G, Patel H, Dent P, Fisher RI, Friedberg J, Grant S. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br J Haematol 2013;161:4356.
  • 75
    Pan Z, Scheerens H, Li SJ et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem 2007;2:5861.
  • 76
    Honigberg LA, Smith AM, Sirisawad M et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 2010;107:1307580.
  • 77
    Brown JR. Ibrutinib (PCI-32765), the first BTK (Bruton's tyrosine kinase) inhibitor in clinical trials. Curr Hematol Malig Rep 2013;8:16.
  • 78
    Ponader S, Chen SS, Buggy JJ et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012;119:11829.
  • 79
    Herman SE, Gordon AL, Hertlein E et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011;117:628796.
  • 80
    Tai YT, Chang BY, Kong SY et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012;120:187787.
  • 81
    Edwards CM. BTK inhibition in myeloma: targeting the seed and the soil. Blood 2012;120:17579.
  • 82
    Brett LK, Williams ME. Current and Emerging Therapies in Mantle Cell Lymphoma. Curr Treat Options Oncol 2013;14:198211.
  • 83
    Chang BY, Huang MM, Francesco M et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011;13:R115.
  • 84
    Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs 2012;21:92147.
  • 85
    Advani RH, Buggy JJ, Sharman JP et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013;31:8894.
  • 86
    Brown K, Long JM, Vial SC et al. Crystal structures of interleukin-2 tyrosine kinase and their implications for the design of selective inhibitors. J Biol Chem 2004;279:1872732.
  • 87
    Das J, Liu C, Moquin RV et al. Discovery and SAR of 2-amino-5-[(thiomethyl)aryl]thiazoles as potent and selective Itk inhibitors. Bioorg Med Chem Lett 2006;16:24115.
  • 88
    Das J, Furch JA, Liu C et al. Discovery and SAR of 2-amino-5-(thioaryl)thiazoles as potent and selective Itk inhibitors. Bioorg Med Chem Lett 2006;16:370612.
  • 89
    Snow RJ, Abeywardane A, Campbell S et al. Hit-to-lead studies on benzimidazole inhibitors of ITK: discovery of a novel class of kinase inhibitors. Bioorg Med Chem Lett 2007;17:36605.
  • 90
    Winters MP, Robinson DJ, Khine HH et al. 5-Aminomethyl-1H-benzimidazoles as orally active inhibitors of inducible T-cell kinase (Itk). Bioorg Med Chem Lett 2008;18:55414.
  • 91
    Moriarty KJ, Winters M, Qiao L et al. Itk kinase inhibitors: initial efforts to improve the metabolical stability and the cell activity of the benzimidazole lead. Bioorg Med Chem Lett 2008;18:553740.
  • 92
    Riether D, Zindell R, Kowalski JA et al. 5-Aminomethylbenzimidazoles as potent ITK antagonists. Bioorg Med Chem Lett 2009;19:158891.
  • 93
    Velankar AD, Quintini G, Prabhu A et al. Synthesis and biological evaluation of novel (4 or 5-aryl)pyrazolyl-indoles as inhibitors of interleukin-2 inducible T-cell kinase (ITK). Bioorg Med Chem 2010;18:454759.
  • 94
    von Bonin A, Rausch A, Mengel A et al. Inhibition of the IL-2-inducible tyrosine kinase (Itk) activity: a new concept for the therapy of inflammatory skin diseases. Exp Dermatol 2011;20:417.
  • 95
    Herdemann M, Weber A, Jonveaux J, Schwoebel F, Stoeck M, Heit I. Optimisation of ITK inhibitors through successive iterative design cycles. Bioorg Med Chem Lett 2011;21:18526.
  • 96
    Charrier JD, Miller A, Kay DP et al. Discovery and structure-activity relationship of 3-aminopyrid-2-ones as potent and selective interleukin-2 inducible T-cell kinase (Itk) inhibitors. J Med Chem 2011;54:234150.
  • 97
    Guo W, Liu R, Ono Y et al. Molecular characteristics of CTA056, a novel interleukin-2-inducible T-cell kinase inhibitor that selectively targets malignant T cells and modulates oncomirs. Mol Pharmacol 2012;82:93847.
  • 98
    McLean LR, Zhang Y, Zaidi N et al. X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase. Bioorg Med Chem Lett 2012;22:3296300.
  • 99
    Lin TA, McIntyre KW, Das J et al. Selective Itk inhibitors block T-cell activation and murine lung inflammation. Biochemistry 2004;43:1105662.
  • 100
    Cook BN, Bentzien J, White A et al. Discovery of potent inhibitors of interleukin-2 inducible T-cell kinase (ITK) through structure-based drug design. Bioorg Med Chem Lett 2009;19:7737.