• Atkinson, A. C. & Biswas, A. (2005). Adaptive biased-coin designs for skewing the allocation proportion in clinical trials with normal responses. Stat. Med. 24, 24772492.
  • Bandyopadhyay, U. & Biswas, A. (2001). Adaptive designs for normal responses with prognostic factors. Biometrika 88, 409419.
  • Chambaz, A. & van der Laan, M. J. (2009). Targeting the optimal design in randomized clinical trials with binary outcomes and no covariate. Technical report, Division of Biostatistics, University of California, Berkeley.
  • Chambaz, A. & van der Laan, M. J. (2011). Targeting the optimal design in randomized clinical trials with binary outcomes and no covariate: theoretical study. Int. J. Biostat. 7, (1), Art. 10, 33 pp.
  • Emerson, S. S. (2006). Issues in the use of adaptive clinical trial designs. Stat. Med. 25, 32703296.
  • Food and Drug Administration. (2006). Critical path opportunities list. Technical report, U.S. Department of Health and Human Services, Food and Drug Administration.
  • Golub, H. L. (2006). The need for more efficient trial designs. Stat. Med. 25, 32313235.
  • Hu, F. & Rosenberger, W. F. (2006). The theory of response adaptive randomization in clinical trials, Wiley, New York.
  • Jennison, C. & Turnbull, B. W. (2000). Group sequential methods with applications to clinical trials, Chapman & Hall/CRC, Boca Raton, FL.
  • Lauritzen, S. L. (2001). Causal inference from graphical models. In Complex stochastic systems (Eindhoven, 1999), volume 87 of Monogr. Statist. Appl. Probab., Chapman & Hall/CRC, Boca Raton, FL, 63107.
  • Moore, K. L. & van der Laan, M. J. (2009). Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation. Stat. Med. 28, 3964.
  • Pearl, J. (2000). Causality, Cambridge University Press, Cambridge. Models, reasoning, and inference.
  • Proschan, M. A., Lan, G. K. K. & Wittes, J. T. (2006). Statistical monitoring of clinical trials: a unified approach, Statistics for biology and health, Springer, New-York.
  • Rosenberger, W. F. (1996). New directions in adaptive designs. Statist. Sci. 11. 227236.
  • Rosenberger, W. F., Vidyashankar, A. N. & Agarwal, D. K. (2001). Covariate-adjusted response-adaptive designs for binary response. J. Biopharm. Statist. 11. 227-236.
  • Sen, P. K. & Singer, J. M. (1993). Large sample methods in statistics, Chapman & Hall, New York. An introduction with applications.
  • Shao, J., Yu, X. & Zhong, B. (2010). A theory for testing hypotheses under covariate-adaptive randomization. Biometrika 97, (2), 347360.
  • van der Laan, M. J. (2006). Statistical inference for variable importance. Int. J. Biostat. 2, Art. 2, 33 pp. (electronic).
  • van der Laan, M. J. (2008). The construction and analysis of adaptive group sequential designs. Technical Report 232, Division of Biostatistics, University of California, Berkeley.
  • van der Laan, M. J. & Rubin, D. (2006). Targeted maximum likelihood learning. Int. J. Biostat. 2, Art. 11, 40 pp.
  • van der Vaart, A. W. (1998). Asymptotic statistics, Cambridge University Press, Cambridge.
  • van der Vaart, A. W. & Wellner, J. A. (1996). Weak convergence and emprical processes, Springer-Verlag, New York.
  • Zhang, L.-X., Hu, F., Cheung, S. H. & Chan, W. S. (2007). Asymptotic properties of covariate-adjusted response-adaptive designs. Ann. Statist. 35, 11661182.
  • Zhang, L.-X. & Hu, F.-F. (2009). A new family of covariate-adjusted response adaptive designs and their properties. Appl. Math. J. Chinese Univ. Ser. B 24, 113.
  • Zhu, H. & Hu, F. (2010). Sequential monitoring of response-adaptive randomized clinical trials. Ann. Statist. 38, 22182241.