SEARCH

SEARCH BY CITATION

References

  • Abraham, R. & Marsden, J. E. (1978). Foundations of mechanics, (2nd ed.)., Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass. ISBN: 0-8053-0102-X.
  • Amari, S. & Nagaoka, H. (2000). Methods of information geometry, Translations of Mathematical Monographs, vol. 191, American Mathematical Society, Providence, RI. ISBN: 0-8218-0531-2.
  • Beskos, A., Pinski, F. J., Sanz-Serna, J. M. & Stuart, A. M. (2011). Hybrid Monte Carlo on Hilbert spaces. Stochastic Process. Appl. 121, (10), 22012230, DOI 10.1016/j.spa.2011.06.003.
  • Brubaker, M., Salzmann, M. & Urtasun, R. (2012). A family of MCMC methods on implicitly defined manifolds. In JMLR Workshop and Conference Proceedings, Vol. 22; 161172. Available on http://jmlr.csail.mit.edu/proceedings/papers/v22/brubaker12/brubaker12. pdf.
  • Cardoso, J. R. & Leite, F. S. (2010). Exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. J. Comput. Appl. Math. 233, (11), 28672875. DOI: 10.1016/j.cam.2009.11.032.
  • Diaconis, P., Holmes, S. & Shahshahani, M. (2013). Sampling from a manifold. In Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton (eds G. Jones & X. Shen), Institute of Mathematical Statistics.
  • do Carmo, M. P. (1976). Differential geometry of curves and surfaces, Prentice-Hall Inc., Englewood Cliffs, N.J.
  • do Carmo, M. P. (1992). Riemannian geometry, Mathematics: theory & applications, Birkhäuser Boston Inc., Boston, MA. ISBN: 0-8176-3490-8.
  • Dobigeon, N. & Tourneret, J. -Y. (2010). Bayesian orthogonal component analysis for sparse representation. IEEE Trans. Signal Process. 58, (5), 26752685. ISSN: 1053-587X, DOI: 10.1109/TSP.2010.2041594, Available on http://dx.doi.org/10.1109/TSP.2010.2041594.
  • Duane, S., Kennedy, A. D., Pendleton, B. J. & Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195, 216222.
  • Edelman, A., Arias, T. A. & Smith, S. T. (1999). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, (2), 303353. DOI: 10.1137/S0895479895290954.
  • Federer, H. (1969). Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York.
  • Gallier, J. & Xu, D. (2002). Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. Int. J. Rob. Autom. 17, (4), 111.
  • Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: The 23rd Symposium on the Interface (ed Keramigas, E.), Interface Foundation, Fairfax; 156163.
  • Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. (eds). (1996). Markov chain Monte Carlo in practice, Interdisciplinary Statistics, Chapman & Hall, London. ISBN: 0-412-05551-1.
  • Girolami, M. & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, (2), 123214. With discussion and a reply by the authors, DOI: 10.1111/j.1467-9868.2010.00765.x.
  • Hairer, E., Lubich, C. & Wanner, G. (2006). Geometric numerical integration, (2nd ed.)., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin. Structure-preserving algorithms for ordinary differential equations, ISBN: 3-540-30663-3; 978-3-540-30663-4.
  • Hankin, R. K. S. (2010). A generalization of the Dirichlet distribution. J. Stat. Softw. 33, (11), 118. Available on http://www.jstatsoft.org/v33/i11.
  • Hoff, P. D. (2009). Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data. J. Comput. Graph. Statist. 18, (2), 438456. DOI: 10.1198/jcgs.2009.07177.
  • Jolliffe, I. T. (1986). Principal component analysis, Springer Series in Statistics, Springer-Verlag, New York. ISBN: 0-387-96269-7.
  • Konukoglu, E., Relan, J., Cilingir, U., Menze, B. H., Chinchapatnam P., Jadidi, A., Cochet, H., Hocini, M., Delingette, H., Jaïs, P., Haïssaguerre, M., Ayache, N. & Sermesant, M. (2011). Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107, (1), 134146.
  • Le Polain de Waroux, O., Maguire, H. & Moren, A. (2012). The case-cohort design in outbreak investigations. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles 17, (25), 1115.
  • Liu, J. S. (2008). Monte Carlo strategies in scientific computing, Springer Series in Statistics, Springer, New York. pp. xvi+343. isbn: 978-0-387-76369-9; 0-387-95230-6.
  • Mardia, K. V. & Jupp, P. E. (2000). Directional statistics, Wiley Series in Probability and Statistics, John Wiley & Sons Ltd., Chichester. ISBN: 0-471-95333-4.
  • Martin, J., Wilcox, L. C., Burstedde, C. & Ghattas, O. (2012). A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34, (3), A1460A1487.
  • Morgan, F. (2009). Geometric measure theory, (4th ed.)., Elsevier/Academic Press, Amsterdam. A beginner's guide, ISBN: 978-0-12-374444-9.
  • Nash, J. (1956). The imbedding problem for Riemannian manifolds. Ann. of Math. (2) 63, 2063.
  • Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo, Chapman & Hall/CRC Handb. Mod. Stat. Methods CRC Press, Boca Raton, FL; 113162.
  • Raue, A., Kreutz, C., Theis, F. J. & Timmer, J. (2012). Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability. Phil. Trans. R. Soc. A 371, (1984).
  • Shahbaba, B., Lan, S., Johnson, W. O. & Neal, R. M. (2011). Split Hamiltonian Monte Carlo. arXiv: 1106.5941.
  • Singh, H., Hnizdo, V. & Demchuk, E. (2002). Probabilistic model for two dependent circular variables. Biometrika 89, (3), 719723. DOI: 10.1093/biomet/89.3.719.
  • Stan Development Team. (2012). Stan: a C++ library for probability and sampling, version 1.0. Available on http://mc-stan.org/.
  • Vanlier, J., Tiemann, C. A., Hilbers, P. A. J. & van Riel, N. A. W. (2012). An integrated strategy for prediction uncertainty analysis. Bioinformatics 28, (8), 11301135.