SEARCH

SEARCH BY CITATION

References

  • Asimov, D. (1985). The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Statist. Comput. 6, (1), 128143.
  • Belkin, M. & Niyogi, P. (2006). Convergence of Laplacian eigenmaps. Adv. Neural Inf. Process. Syst. 19, 129136.
  • Betancourt, M. (2013). A general metric for Riemannian manifold Hamiltonian Monte Carlo. In Geometric science of information, vol.  8085, LNCS, Springer, Berlin Heidelberg; 327334.
  • Bhattacharya, A. & Dunson, D. B. (2012). Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds. Ann. Inst. Statist. Math. 64, (4), 687714.
  • Chatterjee, S. & Diaconis, P. Fluctuations of the Bose-Einstein condensate. arXiv preprint arXiv:1306.3625, 2013.
  • Diaconis, P. & Freedman, D. (1986). On the consistency of Bayes estimates. Ann. Statist. 14, (1), 126.
  • Diaconis, P., Holmes, S. & Neal, R. M. (2000). Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab. 10, (3), 726752.
  • Diaconis, P., Holmes, S. & Shahshahani, M. (2012). Sampling from a manifold, arXiv preprint arXiv:1206.6913.
  • Diaconis, P. & Sturmfels, B. (1998). Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26, (1), 363397.
  • Federer, H. (1996). Geometric measure theory (classics in mathematics), (Reprint of the 1st 1969 edition)., Springer, New York.
  • Grayson, M. A. (1989). A short note on the evolution of a surface by its mean curvature. Duke Math. J. 58, (3), 555558.
  • Jones, G. L., & Hobert, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16, (4), 312334.
  • Marsland, S., McLachlan, R. I., Modin, K. & Perlmutter, M. (2012). Geodesic warps by conformal mappings. Int. J. Comput. Vis. 105, (2), 111.
  • McLachlan, R. I & Quispel, G. R. W. (2003). Geometric integration of conservative polynomial ODEs. Appl. Numer. Math. 45, (4), 411418.
  • Miller, M. I. (2004). Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 23 Suppl 1, S19S33.
  • Morgan, F. (2008). Geometric measure theory: a beginner's guide, (Forth edition)., Academic Press: San Diego.
  • Neal, R. (2011). MCMC for using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo CRC Press, Boca Raton; 113162.
  • Perraul-Joncas, D. & Meila, M. (2013). Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric discovery. arXiv preprint arXiv:1305.7255.
  • Seiler, C., Pennec, X. & Holmes, S. (2013). Random spatial structure of geometric deformations and Bayesian nonparametrics. In Geometric science of information, vol.  8085, LNCS Springer, Berlin Heidelberg; 120127.
  • von Luxburg, U., Belkin, M. & Bousquet, O. (2008). Consistency of spectral clustering. Ann. Statist. 36(2), 555586.
  • Younes, L. (2010). Shapes and diffeomorphisms, (First edition)., Vol.  171, Springer.