Strategically Locating Wildlife Crossing Structures for Florida Panthers Using Maximal Covering Approaches

Authors


  • Acknowledgements: The authors express thanks to staff at Big Cypress National Preserve and Everglades National Park for their hard work in assisting with the collection of telemetry and mortality data on Florida panthers. We also thank Darrel Land for his earlier review of this manuscript.

Abstract

Crossing structures are an effective method for mitigating habitat fragmentation and reducing wildlife-vehicle collisions, although high construction costs limit the number that can be implemented in practice. Therefore, optimizing the placement of crossing structures in road networks is suggested as a strategic conservation planning method. This research explores two approaches for using the maximal covering location problem (MCLP) to determine optimal sites to install new wildlife crossing structures. The first approach is based on records of traffic mortality, while the second uses animal tracking data for the species of interest. The objective of the first is to cover the maximum number of collision sites, given a specified number of proposed structures to build, while the second covers as many animal tracking locations as possible under a similar scenario. These two approaches were used to locate potential wildlife crossing structures for endangered Florida panthers (Puma concolor coryi) in Collier, Lee, and Hendry Counties, Florida, a population whose survival is threatened by excessive traffic mortality. Historical traffic mortality records and an extensive radio-tracking dataset were used in the analyses. Although the two approaches largely select different sites for crossing structures, both models highlight key locations in the landscape where these structures can remedy traffic mortality and habitat fragmentation. These applications demonstrate how the MCLP can serve as a useful conservation planning tool when traffic mortality or animal tracking data are available to researchers.

Ancillary