SEARCH

SEARCH BY CITATION

References

  • Abe, N., & Warmuth, M. K. (1992). On the computational complexity of approximating distributions by probabilistic automata. Machine Learning, 9, 205260.
  • Angluin, D. (1982). Inference of reversible languages. Journal of the ACM, 29(3), 741765.
  • Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation, 75(2), 87106.
  • Angluin, D. (1988). Identifying languages from stochastic examples (Tech. Rep. No. YALEU/ DCS/RR-614). New Haven, CT: Yale University, Dept. of Computer Science.
  • Angluin, D., & Kharitonov, M. (1995). When won't membership queries help? Journal of Computer and System Sciences, 50(2), 336355.
  • Benedict, H. (1979). Early lexical development: Comprehension and production. Journal of Child Language, 6(2), 183200.
  • Bertolo, S. (Ed.) (2001). Language acquisition and learnability. Cambridge: Cambridge University Press.
  • Berwick, R., Pietroski, P., Yankama, B., & Chomsky, N. (2011). Poverty of the stimulus revisited. Cognitive Science, 35, 12071242.
  • Case, J., & Kötzing, T. (2009). Difficulties in forcing fairness of polynomial time inductive inference. In R Gavaldà et al. (Ed.), 20th international conference on algorithmic learning theory (pp. 263277). Berlin: Springer-Verlag.
  • Chater, N., & Vitányi, P. (2007). Ideal learning of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology, 51(3), 135163.
  • Chomsky, N. (1955). The logical structure of linguistic theory. Unpublished doctoral dissertation, MIT, Cambridge, Massachusetts.
  • Chomsky, N. (1959). Review of Joshua Greenberg's essays in linguistics. Word, 15, 202218.
  • Chomsky, N. (1966). Topics in the theory of generative grammar. Mouton: Berlin.
  • Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris Publications.
  • Clark, A. (2006). PAC-learning unambiguous NTS languages. In Proceedings of the 8th International Colloquium on Grammatical Inference (ICGI) (pp. 5971). Berlin: Springer.
  • Clark, A. (2010a, September). Distributional learning of some context-free languages with a minimally adequate teacher. In J. Sempere & P. Garcia (Eds.), Grammatical Inference: Theoretical Results and Applications. Proceedings of the International Colloquium on Grammatical Inference (pp. 2437). Valencia, Spain: Springer.
  • Clark, A. (2010b, July). Efficient, correct, unsupervised learning of context-sensitive languages. In Proceedings of the Fourteenth Conference on Computational Natural Language Learning (pp. 2837). Uppsala, Sweden: ACL.
  • Clark, A. (2010c, October). Towards general algorithms for grammatical inference. In M. Hutter et al. (Ed.), Proceedings of the Conference on Algorithmic Learning Theory (pp. 1130). Canberra, Australia: Springer. (Invited Paper)
  • Clark, A. (2011). A language theoretic approach to syntactic structure. In M. Kanazawa et al. (Ed.), Proceedings of the 12th Meeting on the Mathematics of Language (MOL). Nara, Japan: Springer.
  • Clark, A., & Eyraud, R. (2007, August). Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research, 8, 17251745.
  • Clark, A., & Lappin, S. (2011). Linguistic nativism and the poverty of the stimulus. Oxford: Wiley-Blackwell.
  • Clark, A., & Thollard, F. (2004). PAC-learnability of probabilistic deterministic finite state automata. The Journal of Machine Learning Research, 5, 473497.
  • Cohen, S., & Smith, N. (2012). Empirical risk minimization for probabilistic grammars: Sample complexity and hardness of learning. Computational Linguistics, 38(3), 148.
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, 13(1), 2127.
  • Cristianini, N., & Shawe-Taylor, J. (2000). Support vector machines. Cambridge: Cambridge University Press.
  • De Jongh, D., & Kanazawa, M. (1996). Angluin's theorem for indexed families of re sets and applications. In Proceedings of the Ninth Annual Conference on Computational Learning Theory (pp. 193204). ACM.
  • Fodor, J., & Sakas, W. (2004). Evaluating models of parameter setting. In Proceedings of the 28th Annual Boston University Conference on Language Development (pp. 127).
  • Fodor, J., & Sakas, W. (2005). The subset principle in syntax: Costs of compliance. Journal of Linguistics, 41(3), 513570.
  • Fulk, M. (1990). Prudence and other conditions on formal language learning. Information and Computation, 85(1), 111.
  • Gazdar, G., Klein, E., Pullum, G., & Sag, I. (1985). Generalised phrase structure grammar. Oxford: Basil Blackwell.
  • Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447474.
  • Gold, E. M. (1978). Complexity of automaton identification from given data. Information and Control, 37(3), 302320.
  • Gouvea, A., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the p600. Language and Cognitive Processes, 25(2), 149188.
  • Griffiths, T., Kemp, C., & Tenenbaum, J. (2008). Bayesian models of cognition. In R. Sun (Ed.), Cambridge handbook of computational cognitive modeling (pp. 59100). Cambridge: Cambridge University Press.
  • Harris, Z. (1954). Distributional structure. Word, 10(2–3), 146162.
  • Harris, Z. (1955). From phonemes to morphemes. Language, 31, 190222.
  • Haussler, D., & Kearns, M. (1991). Equivalence of models for polynomial learnability. Information and Computation, 95(2), 129161.
  • Hendriks, P., & Koster, C. (2010). Production/comprehension asymmetries in language acquisition. Lingua, 120(8), 18871897.
  • de la Higuera, C. (1997). Characteristic sets for polynomial grammatical inference. Machine Learning, 27(2), 125138.
  • Horning, J. J. (1969). A study of grammatical inference. Unpublished doctoral dissertation, Computer Science Department, Stanford University, California.
  • Impagliazzo, R. (1995). A personal view of average-case complexity. In Proceedings of Tenth Annual IEEE Structure in Complexity Theory Conference (pp. 134147). IEEE.
  • Jain, S., Osherson, D., Royer, J. S., & Sharma, A. (1999). Systems that learn: An introduction to learning theory (2nd ed.). Cambridge, Massachusetts: MIT Press.
  • Johnson, K. (2004). Gold's theorem and cognitive science. Philosophy of Science, 71(4), 571592.
  • Johnson, M., Griffiths, T., & Goldwater, S. (2007). Bayesian inference for PCFGs via markov chain monte carlo. In Proceedings of NAACL-HLT (pp. 139146). ACL.
  • Kearns, M., & Valiant, G. (1994, January). Cryptographic limitations on learning boolean formulae and finite automata. Journal of the ACM, 41(1), 6795.
  • Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R., & Sellie, L. (1994). On the learnability of discrete distributions. In Proceedings of the 25th Annual Acm Symposium on Theory of Computing (pp. 273282). ACM.
  • Lappin, S., & Shieber, S. (2007). Machine learning theory and practice as a source of insight into univeral grammar. Journal of Linguistics, 43, 393427.
  • MacKay, D. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.
  • MacWhinney, B. (1995). The CHILDES project: Tools for analyzing talk. Hillsdale, NJ: Lawrence Erlbaum.
  • Marantz, A. (2005). Generative linguistics within the cognitive neuroscience of language. Linguistic review, 22(2/4), 429.
  • Matthews, R. (2001). Cowie's anti-nativism. Mind & Language, 16(2), 215230.
  • Meyer, A., & Fischer, M. (1971). Economy of description by automata, grammars, and formal systems. In Proceedings of the IEEE Twelfth Annual Symposium on Switching and Automata Theory (pp. 188191).
  • Michaelis, J. (2001). Transforming linear context-free rewriting systems into minimalist grammars. In P. de Groote, G. Morrill, & C. Retoré (Eds.), Logical aspects of computational linguistics (pp. 228244). Berlin: Springer.
  • Miller, P. (1999). Strong generative capacity: The semantics of linguistic formalism. Stanford: CSLI Publications.
  • Niyogi, P., & Berwick, R. (1996). A language learning model for finite parameter spaces. Cognition, 61(1–2), 161193.
  • Nowak, M., Komarova, N., & Niyogi, P. (2001). Evolution of universal grammar. Science, 291(5501), 114118.
  • Palmer, N., & Goldberg, P. (2007). PAC-learnability of probabilistic deterministic finite state automata in terms of variation distance. Theoretical Computer Science, 387(1), 1831.
  • Pitt, L. (1989). Inductive inference, DFAs, and computational complexity. In K. P. Jantke (Ed.), Analogical and inductive inference (pp. 1844). Berlin: Springer-Verlag.
  • Pollard, C., & Sag, I. (1994). Head driven phrase structure grammar. Chicago: University of Chicago Press.
  • Ron, D., Singer, Y., & Tishby, N. (1998). On the learnability and usage of acyclic probabilistic finite automata. Journal of Computer and System Sciences, 56(2), 133152.
  • van Rooij, I. (2008). The tractable cognition thesis. Coginitive Science: A Multidisciplinary Journal, 32(6), 939984.
  • Sagae, K., Davis, E., Lavie, A., MacWhinney, B., & Wintner, S. (2007). High-accuracy annotation and parsing of childes transcripts. In Proceedings of the Workshop on Cognitive Aspects of Computational Language Acquisition (pp. 2532). ACL.
  • Seki, H., Matsumura, T., Fujii, M., & Kasami, T. (1991). On multiple context-free grammars. Theoretical Computer Science, 88(2), 229.
  • Shinohara, T. (1994). Rich classes inferable from positive data. Information and Computation, 108(2), 175186.
  • Stabler, E. (1997). Derivational minimalism. In C. Retoré (Ed.), Logical aspects of computational linguistics (LACL 1996) (pp. 6895). Berlin: Springer.
  • Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27(11), 11341142.
  • Wells, R. S. (1947). Immediate constituents. Language, 23(2), 81117.
  • Wexler, K., & Culicover, P. W. (1980). Formal principles of language acquisition. Cambridge, MA: MIT Press.
  • Yang, C. (2008). The great number crunch. Journal of Linguistics, 44(01), 205228.
  • Yoshinaka, R. (2011). Efficient learning of multiple context-free languages with multidimensional substitutability from positive data. Theoretical Computer Science, 412(19), 18211831.
  • Yoshinaka, R., & Kanazawa, M. (2011). Distributional learning of abstract categorial grammars. In S. Pogodalla & J.-P. Prost (Eds.), Lacl (Vol. 6736, pp. 251266). Berlin: Springer.
  • Zeugmann, T., & Lange, S. (1995). A guided tour across the boundaries of learning recursive languages. In K. Jantke & S. Lange (Eds.), Algorithmic learning for knowledge-based systems (Vol. 961, pp. 190258). Berlin/Heidelberg: Springer.