SEARCH

SEARCH BY CITATION

References

  • Angluin, D. (1980). Inductive inference of formal languages from positive data. Information and Control, 45, 117135.
  • Angluin, D. (1988). Identifying languages from stochastic examples. Technical report YALEU/DCS/RR-614. New Haven, CT: Yale University.
  • Attneave, E., & Frost, R. (1969). The determination of perceived tridimensional orientation by minimum criteria. Perception & Psychophysics, 6, 391396.
  • Baker, C. L., & McCarthy, J. J. (1981). The logical problem of language acquisition. Cambridge, MA: MIT Press.
  • Barendregt, H. P. (1984). The lambda calculus. Amsterdam: Elsevier.
  • Bloomfield, L. (1933). Language. New York: Henry Holt.
  • Bowerman, M. (1988). The ‘No Negative Evidence’ problem: How do children avoid constructing an overly general grammar? In J. Hawkins (Ed.), Explaining language universals (pp. 73101). Oxford, England: Blackwell.
  • Brent, M. R., & Cartwright, T. A. (1996). Distributional regularity and phonotactic constraints are useful for segmentation. Cognition, 61, 93126.
  • Brown, R., & Hanlon, C. (1970). Derivational complexity and order of acquisition in child speech. In J. R. Hayes (Ed.), Cognition and the development of language. New York: Wiley.
  • Carlucci, L., & Case, J. (2013). On the necessity of U-shaped learning. Topics in Cognitive Science (this issue), 5, 5688.
  • Chater, N., & Vitányi, P. (2002). Simplicity: A unifying principle incognitive science? Trends in Cognitive Sciences, 7, 1922.
  • Chater, N., & Vitányi, P. (2007). Ideal learning of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology, 51, 135163.
  • Chomsky, N. (1957). Syntactic structures. The Hague/Paris: Mouton.
  • Chomsky, N. (1980). Rules and representations. Cambridge, MA: MIT Press.
  • Christiansen, M. H., & Chater, N. (1994). Generalization and connectionist language learning. Mind & Language, 9, 273287.
  • Christiansen, M. H., & Chater, N. (1999). Connectionist natural language processing: The state of the art. Cognitive Science, 23, 417437.
  • Christiansen, M. H., & Chater, N. (2007). Generalization and connectionist language learning. Mind & Language, 9, 273287.
  • Christiansen, M., & Chater, N. (2010). Language acquisition meets language evolution. Cognitive Science, 34, 11311157.
  • Clark, A., & Eyraud, R. (2007). Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research, 8, 17251745.
  • Clark, A., & Lappin, S. (2013). Complexity in language acquisition. Topics in Cognitive Science (this issue), 5, 89110.
  • Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley.
  • Crain, S., & Lillo-Martin, D. (1999). Linguistic theory and language acquisition. Oxford, England: Blackwell.
  • Demetras, M., Post, K., & Snow, C. (1986). Feedback to first language learners: The role of repetitions and clarification questions. Journal of Child Language, 13, 275292.
  • Dowman, M. (2000). Addressing the learnability of verb subcategorizations with Bayesian inference. In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of the Twenty Second Annual Conference of the Cognitive Science Society (pp. 107112). Mahwah, NJ: Erlbaum.
  • Dresher, B., & Hornstein, N. (1976). On some supposed contributions of artificial intelligence to the scientific study of language. Cognition, 4, 321398.
  • Ellison, M. (1992). The machine learning of phonological structure. PhD Thesis, University of Western Australia, Crawley, Western Australia.
  • Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179211.
  • Feldman, J. (1972). Some decidability results on grammatical inference and complexity. Information and Control, 20, 244262.
  • Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 403, 630633.
  • Gold, E. M. (1967). Language identification in the limit. Information and Control, 16, 447474.
  • Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language. Computational Linguistics, 27, 153198.
  • Hochberg, J., & McAlister, E. (1953). A quantitative approach to figure “goodness.” Journal of Experimental Psychology, 46, 361364.
  • Horning, J. J. (1969). A study of grammatical inference. Technical Report CS 139. Palo Alto, CA: Stanford University.
  • Hornstein, N., & Lightfoot, D. (1981). Explanation in linguistics: The logical problem of language acquisition. London: Longman.
  • Hsu, A., & Chater, N. (2010). The logical problem of language acquisition: A probabilistic perspective. Cognitive Science, 34, 9721016.
  • Hsu, A., Chater, N., & Vitányi, P. (2011). The probabilistic analysis of language acquisition: Theoretical, computational, and experimental analysis. Cognition, 120, 380390.
  • Jain, S., Osherson, D. N., Royer, J. S., & Kumar Sharma, A. (1999). Systems that learn (2nd ed.). Cambridge, MA: MIT Press.
  • Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning over hypothesis with hierarchical Bayesian models. Developmental Science, 10, 307321.
  • Klein, D., & Manning, C. (2005). Natural language grammar induction with a generative constituent-context model. Pattern Recognition, 38, 14071409.
  • Langley, P., & Stromsten, S. (2000). Learning context-free grammars with a simplicity bias. In Proceedings of the Eleventh European Conference on Machine Learning (pp. 220228). London: Springer-Verlag.
  • Leeuwenberg, E. L. J. (1969). Quantitative specification of information in sequential patterns. Psychological Review, 76, 216220.
  • Li, M., & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applications (2nd ed.). London: Springer.
  • Mach, E. (1959). The analysis of sensations and the relation of the physicalto the psychical. New York: Dover Publications (original work published in 1886).
  • MacWhinney, B. (1993). The (il)logical problem of language acquisition. In Proceedings of the 15th annual conference of the Cognitive Science Society (pp. 6170). Mahwah, NJ: Erlbaum.
  • MacWhinney, B. (2004). A multiple process solution to the logical problem of language acquisition. Journal of Child Language, 31, 883914.
  • Marcus, G. F. (1993). Negative evidence in language acquisition. Cognition, 46, 5385.
  • Niyogi, P. (2006). The computational nature of language learning and evolution. Cambridge, MA: MIT Press.
  • Odifreddi, P. (1988). Classical recursion theory. North Holland: Elsevier.
  • Onnis, L., Roberts, M., & Chater, N. (2002). Simplicity: A cure for overgeneralizations in language acquisition? In D. Gray & C. D. Schunn (Eds.), Proceedings of the 24th Annual Conference of the Cognitive Science Society (pp. 720725. Mahwah, NJ: Erlbaum.
  • Pereira, F. C. N., & Warren, D. H. D. (1980). Definite clause grammars for language analysis. Artificial Intelligence, 13, 231278.
  • Perfors, A., Regier, T., & Tenenbaum, J. B. (2006). Poverty of the Stimulus? A rational approach. In R. Sun & N. Miyaki (Eds.), Proceedings of the Twenty-Eighth Annual Conference of the Cognitive Science Society (pp. 663668.) Mahwah, NJ: Erlbaum.
  • Pinker, S. (1979). Formal models of language learning. Cognition, 7, 217283.
  • Pinker, S. (1984). Language learnability and language development (7th ed.). Cambridge, MA: Harvard University Press.
  • Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure. Cambridge, MA: MIT Press.
  • Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707784.
  • Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: Bradford Books/MIT Press.
  • Rissanen, J. (1987). Stochastic complexity. Journal of the Royal Statistical Society, Series B,49, 223239.
  • Rohde, D. L. T., & Plaut, D. C. (1999). Language acquisition in the absence of explicit negative evidence: How important is starting small?. Cognition, 72, 68109.
  • Shannon, C. E. (1951). Prediction and entropy of printed English. Bell Systems Technical Journal, 31, 64.
  • Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory, IT, 24, 422432.
  • Steyvers, M., Griffiths, T., & Dennis, S. (2006). Probabilistic inference in human semantic memory. Trends in Cognitive Sciences, 10, 309318.
  • Stolcke, A. (1994). Bayesian learning of probabilistic language models. Berkeley: University of California.
  • Tomasello, M. (2004). Syntax or semantics? Response to Lidz et al. Cognition, 93, 139140.
  • Vousden, J. I., Ellefson, M. R., Solity, J. E., & Chater, N. (2011). Simplifying reading: Applying the simplicity principle to reading. Cognitive Science, 35, 3478.
  • Wallace, C. S., & Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal Statistical Society, Series B, 49, 240251.
  • Wharton, R. M. (1974). Approximate language identification. Information and Control, 26, 236255.
  • Wolff, J. G. (1988). Learning syntax and meanings through optimisation and distributional analysis. In Y. Levy, I. M. Schlesinger, & M. D. S. Braine (Eds.), Categories and processes in language acquisition, (pp. 179215). Hillsdale, NJ: LEA.