SEARCH

SEARCH BY CITATION

References

  • Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.
  • Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409429.
  • Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation. Journal of Mathematical Psychology, 39, 216233.
  • Balcan, M.-F., & Blum, A. (2010). A discriminative model for semi-supervised learning. Journal of the ACM, 57(3), 19:1–19:46
  • Billman, D., & Knutson, J. (1996). Unsupervised concept learning and value systematicity: A complex whole aids learning the parts. Journal of Experimental Psychology: Learning Memory and Cognition, 22(2), 458475.
  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
  • Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In P. Bartlett and Y. Mansour (Ed.), COLT '98: Proceedings of the eleventh annual conference on Computational learning theory (pp. 92100). New York: ACM.
  • Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2008). Optimization techniques for semi-supervised support vector machines. Journal of Machine Learning Research, 9(Feb), 203233.
  • Chapelle, O., Schölkopf, B., & Zien, A. (Eds.) (2006). Semi-supervised learning. Cambridge, MA: MIT Press.
  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 138.
  • Fried, L. S., & Holyoak, K. J. (1984). Induction of category distributions: A framework for classification learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(2), 234257.
  • Gibson, B. R., Zhu, X., Rogers, T. T., Kalish, C.W., & Harrison, J. (2010). Humans learn using manifolds, reluctantly. In J. Lafferty (Ed.), Advances in neural information processing systems 23, vol. 24, (pp. 730738). Red Hook, NY: Curran Associates, Inc.
  • Goldstone, R. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: Human Perception and Performance, 123(2), 178200.
  • Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro, D. J. (2007). Unifying rational models of categorization via the hierarchical dirichlet process. In D. S. McNamara & J. G. Trafton (Ed.), Proceedings of the 29th Annual Cognitive Science Society (pp. 323328). Austin, TX: Cognitive Science Society.
  • Griffiths, T. L., Sanborn, A. N., Canini, K. R., Navarro, D. J., & Tenenbaum, J. B. (2011). Nonparametric bayesian models of categorization. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 173198). Cambridge, UK: Cambridge University Press.
  • Gureckis, T. M., & Love, B. C. (2003). Towards a unified account of supervised and unsupervised category learning. Journal of experimental and theoretical artificial intelligence, 15(1), 124.
  • Hampton, J. A. (1993). Prototype models of concept representation. In I. Van Mechelen, J. Hampton, R. S. Michalski, & P. Theuns (Eds.), Categories and concepts: Theoretical views and inductive data analysis (pp. 6795). San Diego, CA: Academic Press.
  • Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93(4), 411428.
  • Joachims, T. (1999). Transductive inference for text classification using support vector machines. In I. Bratko & S. Dzeroski (Eds.), Proceedings of the 16th international conference on machine learning (ICML 1999) (pp. 200209). San Francisco, CA: Morgan Kaufmann.
  • Kalish, C. W., Rogers, T. T., Lang, J., & Zhu, X. (2011). Can semi-supervised learning explain incorrect beliefs about categories? Cognition, 120(1), 106118.
  • Kruschke, J. (1992). Alcove: An exemplar-based connectionist model of category learning. Psychological Review, 99(1), 2244.
  • Lawrence, N. D., & Jordan, M. I. (2005). Semi-supervised learning via Gaussian processes. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (pp. 753760). Cambridge, MA: MIT Press.
  • Love, B. C. (2002). Comparing supervised and unsupervised category learning. Psychonomic Bulletin and Review, 9(4), 829835.
  • Love, B. C., Medin, D., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 309332.
  • Mansinghka, V. K., Roy, D. M., Rifkin, R., & Tenenbaum, J. (2007). AClass: An online algorithm for generative classification. In M. Meila and X. Shen (Eds.), Journal of Machine Learning Research - Proceedings Track, vol. 2 (pp. 315322). Brookline, MA: Microtome Publishing.
  • Medin, D., & Schaffer, M. (1978). Context theory of classification learning. Psychological Review; Psychological Review, 85(3), 207.
  • Minda, J. P., & Smith, J. D. (2011). Prototype models of categorization: Basic formulation, predictions, and limitations. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 4064). Cambridge, UK: Cambridge University Press.
  • Murphy, G. L., & Smith, E. E. (1982). Basic-level superiority in picture categorization. Journal of Verbal Learning and Verbal Behavior, 21(1), 120.
  • Myers, J. (1976). Probability learning and sequence learning. In W. Estes (Ed.), Handbook of learning and cognitive processes: Approaches to human learning and motivation (pp. 171205). Hillsdale, NJ: Erlbaum.
  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and Its Application, 9, 141142.
  • Neal, R. M. (1998). Markov chain sampling methods for dirichlet process mixture models (Tech. Rep. No. 9815). Department of Statistics, University of Toronto.
  • Nosofksy, R. M., & Palmeri, T. J. (1997). An exemplar-based random-walk model of speeded classification. Psychological Review, 104, 266300.
  • Nosofsky, R. M. (1984). Choice, similarity and the context theory of classification. Journal of experimental psychology: Learning, memory and cognition, 10(1), 104114.
  • Nosofsky, R. M. (1985). Overall similarity and the identification of separable-dimension stimuli: A choice model analysis. Perception and Psychophysics, 38(5), 415432.
  • Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 3957.
  • Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. Journal of Experimental Psychology: Learning, Memory and Cognition, 13(1), 87108.
  • Nosofsky, R. M. (1991). The relation between the rational model and the context model of categorization. Psychological Science, 2(6), 416421.
    Direct Link:
  • Nosofsky, R. M. (2011). The generalized context model: An exemplar model of classification. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 1839). Cambridge, UK: Cambridge University Press.
  • Palmeri, T. J., & Flanery, M. A. (1999). Learning about categories in the absence of training: Profound amnesia and the relationship between perceptual categorization and recognition memory. Psychological Science, 10, 526530.
    Direct Link:
  • Palmeri, T. J., & Flanery, M. A. (2002). Memory systems and perceptual categorization. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory, vol. 41, (pp. 141189). San Diego: Academic Press.
  • Posner, M., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3), 353363.
  • Pothos, E., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26(3), 303343.
  • Rogers, T. T., Kalish, C. W., Gibson, B. R., Harrison, J., & Zhu, X. (2010). Semi-supervised learning is observed in a speeded but not an unspeeded 2D categorization task. In S. Ohlsson and R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 23202325). Austin, TX: Cognitive Science Society.
  • Rosch, E., Mervis, C. B., Gray, D. W., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive psychology, 8(3), 382439.
  • Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. In R. Sun (Ed.), Proceedings of the 28th annual conference of the cognitive science society (pp. 761731). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  • Shepard, R. N. (1986). Discrimination and generalization in identification and classification: Comment on nosofsky. Journal of Experimental Psychology: General, 115, 5861.
  • Shepard, R. N. (1991). Integrality versus separability of stimulus dimensions: From an early convergence of evidence to a proposed theoretical basis. In G. R. Lockhead & J. R. Pomerantz (Eds.), The perception of structure: Essays in honor of Wendell R. Garner (pp. 5371). Washington, DC: American Psychological Association.
  • Smith, E. E., & Medin, D. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.
  • Smith, J. D., & Minda, J. P. (2002). Distinguishing prototype-based and exemplar-based processes in dot-pattern category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(4), 800.
  • Stilp, C. E., Rogers, T. T., & Kluender, K. R. (2010). Rapid efficient coding of correlated complex acoustic properties. In R. Schekman (Ed.), Proceedings of the national academy of sciences, vol. 107, (pp. 2191421919). Washington, DC: National Academy of Sciences.
  • Stutz, J., & Cheeseman, P. (1996). Autoclass – a bayesian approach to classification. In J. Skilling & S. Sibisi (Eds.), Maximum entropy and bayesian methods (pp. 117126). Dordrecht, the Netherlands: Kluwer Academic Publishers.
  • Tarr, M. J., & Bulthoff, H. H. (1998). Image-based object recognition in man, monkey and machine. Cognition, 67, 120.
  • Teh, Y. W. (2010). Dirichlet processes. In C. Sammut and G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 280287). New York: Springer.
  • Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10(7), 309318.
  • Vandist, K., De Schryver, M., & Rosseel, Y. (2009). Semisupervised category learning: The impact of feedback in learning the information-integration task. Attention, Perception, & Psychophysics, 71(2), 328341.
  • Vanpaemel, W., Storms, G., & Ons, B. (2005). A varying abstraction model for categorization. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the 27th annual conference of the cognitive science society (pp. 22772282). Mahwah, NJ: Lawrence Erlbaum Associates, Inc..
  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley-Interscience.
  • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the allocation of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 17.
  • Zaki, S. R., & Nosofsky, R. M. (2007). A high-distortion enhancement effect in the prototype-learning paradigm: Dramatic effects of category learning during test. Memory & Cognition, 35, 20882096.
  • Zhu, X., Gibson, B. R., Jun, K., Rogers, T. T., Harrison, J., & Kalish, C. (2010). Cognitive models of test-item effects in human category learning. In J. Fürnkranz and T. Joachims (Eds.), The 27th international conference on machine learning (ICML-10) (pp. 12471254). Haifa, Israel: Omnipress.
  • Zhu, X., Gibson, B. R., & Rogers, T. T. (2011). Co-Training as a human collaboration policy. In W. Burgard and D. Roth, (Eds.), The 25th conference on artificial intelligence (AAAI-11) (pp. 852857). Menlo Park, CA: The AAAI Press.
  • Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 3(1), 1130, Morgan & Claypool.
  • Zhu, X., Rogers, T., Qian, R., & Kalish, C. (2007). Humans perform semi-supervised classification too. In R. C. Holte and A. Howe (Eds.), Proceedings of the 21st conference on artificial intelligence (AAAI-11) (pp. 864870). Menlo Park, CA: The AAAI Press.