SEARCH

SEARCH BY CITATION

References

  • Baucher, M., Halpin, C., Petit-Conil, M. and Boerjan, W. (2003) Lignin: genetic engineering and impact on pulping. Crit. Rev. Biochem. Mol. Biol. 38, 305350.
  • Benhamed, M., Martin-Magniette, M.-L., Taconnat, L. et al. (2008) Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J. 56, 493504.
  • Berthet, S., Demont-Caulet, N., Pollet, B. et al. (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 23, 11241137.
  • Bonawitz, N.D. and Chapple, C. (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet. 44, 337363.
  • Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E. and Trygg, J. (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMA classification. J. Chemom. 20, 341351.
  • Chapple, C., Vogt, T., Ellis, B.E. and Somerville, C.R. (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell, 4, 14131424.
  • Cloarec, O., Dumas, M.-E., Craig, A. et al. (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem. 77, 12821289.
  • Currie, H.A. and Perry, C.C. (2006) Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. J. Chromatogr. A, 1128, 9096.
  • Davis, J., Brandizzi, F., Liepman, A.H. and Keegstra, K. (2010) Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. Plant J. 64, 10281037.
  • De Sutter, V., Vanderhaeghen, R., Tilleman, S., Lammertyn, F., Vanhoutte, I., Karimi, M., Inzé, D., Goossens, A. and Hilson, P. (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J. 44, 10651076.
  • Faix, O. (1991a) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, 45, 2128.
  • Faix, O., Fortmann, I., Bremer, J. and Meier, D. (1991b) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of polysaccharide-derived products. Holz Roh Werkst. 49, 213219.
  • Geisler-Lee, J., Geisler, M., Coutinho, P.M. et al. (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol. 140, 946962.
  • Gerber, L., Eliasson, M., Trygg, J., Moritz, T. and Sunberg, B. (2012) Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrol. 95, 95100.
  • Gorzsás, A., Stenlund, H., Persson, P., Trygg, J. and Sundberg, B. (2011) Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J. 66, 903914.
  • Goubet, F., Barton, C.J., Mortimer, J.C., Yu, X., Zhang, Z., Miles, G.P., Richens, J., Liepman, A.H., Seffen, K. and Dupree, P. (2009) Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J. 60, 527538.
  • Hedenström, M., Wiklund-Lindström, S., Öman, T., Lu, F., Gerber, L., Schatz, P., Sundberg, B. and Ralph, J. (2009) Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol. Plant, 2, 933942.
  • Hertzberg, M., Aspeborg, H., Schrader, J. et al. (2001) A transcriptional roadmap to wood formation. Proc. Natl Acad. Sci. USA, 98, 1473214737.
  • Huntley, S.K., Ellis, D., Gilbert, M., Chapple, C. and Mansfield, S.D. (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J. Agric. Food Chem. 51, 61786183.
  • Karimi, M., Inzé, D. and Depicker, A. (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193195.
  • Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H. and Demura, T. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 18551860.
  • Li, X., Bergelson, J. and Chapple, C. (2010) The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant. Mol. Plant, 3, 91100.
  • Marita, J.M., Ralph, J., Hatfield, R.D. and Chapple, C. (1999) NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc. Natl Acad. Sci. USA, 96, 1232812332.
  • McCann, M.C., Stacey, N.J., Wilson, R. and Roberts, K. (1993) Orientation of macromolecules in the walls of elongating carrot cells. J. Cell Sci. 106, 13471356.
  • McCarthy, R.L., Zhong, R. and Ye, Z.-H. (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 50, 19501964.
  • Meier, D., Fortmann, I., Odermatt, J. and Faix, O. (2005) Discrimination of genetically modified poplar clones by analytical pyrolysis gas chromatography and principal component analysis. J. Anal. Appl. Pyrol. 74, 129137.
  • Mellerowicz, E.J. and Sundberg, B. (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr. Opin. Plant Biol. 11, 293300.
  • Meyer, K., Cusumano, J.C., Somerville, C. and Chapple, C.C. (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl Acad. Sci. USA, 93, 68696874.
  • Meyer, K., Shirley, A.M., Cusumano, J.C., Bell-Lelong, D.A. and Chapple, C. (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc. Natl Acad. Sci. USA, 95, 66196623.
  • Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell, 19, 270280.
  • Morreel, K., Ralph, J., Kim, H., Lu, F., Goeminne, G., Ralph, S., Messens, E. and Boerjan, W. (2004) Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol. 136, 35373549.
  • Nakano, Y., Nishikubo, N., Goué, N., Ohtani, M., Yamaguchi, M., Katayama, Y. and Demura, T. (2010) MYB transcription factors orchestrating the developmental program of xylem vessels in Arabidopsis roots. Plant Biotechnol. 27, 267272.
  • Oakley, R.V., Wang, Y.-S., Ramakrishna, W., Harding, S.A. and Tsai, C.-J. (2007) Differential expansion and expression of α- and β-tubulin gene families in Populus. Plant Physiol. 145, 961973.
  • Oda, Y. and Fukuda, H. (2012) Secondary cell wall patterning during xylem differentiation. Curr. Opin. Plant Biol. 15, 3844.
  • Ona, T., Sonoda, T., Shibata, M. and Fukazawa, K. (1995) Small-scale method to determine the contents of wood components from multiple eucalypt samples. Tappi J. 78, 121126.
  • Patten, A.M., Jourdes, M., Cardenas, C.L., Laskar, D.D., Nakazawa, Y., Chung, B.-Y., Franceschi, V.R., Davin, L.B. and Lewis, N.G. (2010) Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah1-2 and C4H::F5H lines. Mol. Biosyst., 6, 499515.
  • Pesquet, E., Korolev, A.V., Calder, G. and Lloyd, C.W. (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20, 744749.
  • Ranocha, P., Denancé, N., Vanholme, R. et al. (2010) Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. Plant J. 63, 469483.
  • Ruegger, M., Meyer, K., Cusumano, J.C. and Chapple, C. (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol. 119, 101110.
  • Scott, T.A. and Melvin, E.H. (1953) Determination of dextran with anthrone. Anal. Chem. 25, 16561661.
  • Stenlund, H., Gorzsás, A., Persson, P., Sundberg, B. and Trygg, J. (2008) Orthogonal projections to latent structures discriminant analysis modeling on in situ FT-IR spectral imaging of liver tissue for identifying sources of variability. Anal. Chem. 80, 68986906.
  • Updegraff, D.M. (1969) Semimicro determination of cellulose in biological materials. Anal. Biochem. 32, 420424.
  • Vanholme, R., Demedts, B., Morreel, K., Ralph, J. and Boerjan, W. (2010) Lignin biosynthesis and structure. Plant Physiol. 153, 895905.
  • Yamada, K., Lim, J., Dale, J.M. et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842846.
  • Yamaguchi, M., Kubo, M., Fukuda, H. and Demura, T. (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J. 55, 652664.
  • Yamaguchi, M., Goué, N., Igarashi, H. et al. (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol. 153, 906914.
  • Yamaguchi, M., Mitsuda, N., Ohtani, M., Ohme-Takagi, M., Kato, K. and Demura, T. (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66, 579590.
  • Zhao, Q. and Dixon, R.A. (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci. 16, 227233.
  • Zhao, Q., Gallego-Giraldo, L., Wang, H., Zeng, Y., Ding, S.-Y., Chen, F. and Dixon, R.A. (2010a) An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 63, 100114.
  • Zhao, Q., Wang, H., Yin, Y., Xu, Y., Chen, F. and Dixon, R.A. (2010b) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc. Natl Acad. Sci. USA, 107, 1449614501.
  • Zhong, R., Richardson, E. and Ye, Z.-H. (2007a) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 225, 16031611.
  • Zhong, R., Richardson, E.A. and Ye, Z.-H. (2007b) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 19, 27762792.
  • Zhong, R., Lee, C., Zhou, J., McCarthy, R.L. and Ye, Z.-H. (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 20, 27632782.
  • R.,Lee, C. and Ye, Z.-H. (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol. Plant, 3, 10871103.
  • Zhou, J., Lee, C., Zhong, R. and Ye, Z.-H. (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 21, 248266.