SEARCH

SEARCH BY CITATION

References

  • Ane, J.M., Kiss, G.B., Riely, B.K. et al. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science, 303, 13641367.
  • Ariel, F., Diet, A., Verdenaud, M., Gruber, V., Frugier, F., Chan, R. and Crespi, M. (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 22, 21712183.
  • Arrighi, J.F., Barre, A., Ben Amor, B. et al. (2006) The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142, 265279.
  • Aukerman, M.J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15, 27302741.
  • Bailey-Serres, J., Sorenson, R. and Juntawong, P. (2009) Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci. 14, 443453.
  • Balagopal, V. and Parker, R. (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 21, 403408.
  • Bartel, D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215233.
  • Benedito, V.A., Torres-Jerez, I., Murray, J.D. et al. (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J. 55, 504513.
  • Boisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C. and Barker, D.G. (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant Microbe Interact. 14, 695700.
  • Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J.-P., Niebel, A., Crespi, M. and Frugier, F. (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J. 54, 876887.
  • Branco-Price, C., Kaiser, K.A., Jang, C.J., Larive, C.K. and Bailey-Serres, J. (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J. 56, 743755.
  • Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L. and Voinnet, O. (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320, 11851190.
  • Butler, W., Cook, L. and Vayda, M.E. (1990) Hypoxic stress inhibits multiple aspects of the potato tuber wound response. Plant Physiol. 93, 264270.
  • Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 20222025.
  • Combier, J.P., Frugier, F., de Billy, F. et al. (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 20, 30843088.
  • Combier, J.P., de Billy, F., Gamas, P., Niebel, A. and Rivas, S. (2008) Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev. 22, 15491559.
  • Devers, E.A., Branscheid, A., May, P. and Krajinski, F. (2011) Stars and symbiosis: MicroRNA- and MicroRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol. 156, 19902010.
  • Ding, L. and Han, M. (2007) GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol. 17, 411416.
  • Ehrhardt, D.W., Wais, R. and Long, S.R. (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell, 85, 673681.
  • Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kalo, P. and Kiss, G.B. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962966.
  • Eulalio, A., Tritschler, F. and Izaurralde, E. (2009) The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA, 15, 14331442.
  • Fahraeus, G. (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16, 374381.
  • Fleischer, T.C., Weaver, C.M., McAfee, K.J., Jennings, J.L. and Link, A.J. (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20, 12941307.
  • Gandikota, M., Birkenbihl, R.P., Höhmann, S., Cardon, G.H., Saedler, H. and Huijser, P. (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 49, 683693.
  • Gonzalez-Rizzo, S., Crespi, M. and Frugier, F. (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 18, 26802693.
  • Groth, M., Takeda, N., Perry, J. et al. (2010) NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell, 22, 25092526.
  • Hackenberg, D., Wu, Y., Voigt, A., Adams, R., Schramm, P. and Grimm, B. (2012) Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Mol. Plant, 5, 876888.
  • Halbeisen, R.E. and Gerber, A.P. (2009) Stress-dependent coordination of transcriptome and translatome in yeast. PLoS Biol. 7, e105.
  • Hirsch, S., Kim, J., Munoz, A., Heckmann, A.B., Downie, J.A. and Oldroyd, G.E. (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 21, 545557.
  • Horváth, B., Yeun, L.H., Domonkos, Á. et al. (2011) Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol. Plant Microbe Interact. 24, 13451358.
  • Jagadeeswaran, G., Zheng, Y., Li, Y.F. et al. (2009) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol. 184, 8598.
  • Janas, M.M., Wang, E., Love, T. et al. (2012) Reduced expression of ribosomal proteins relieves microRNA-mediated repression. Mol. Cell, 46, 171186.
  • Jiao, Y. and Meyerowitz, E.M. (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol. Syst. Biol. 6, 419.
  • Juntawong, P. and Bailey-Serres, J. (2012) Dynamic light regulation of translation status in Arabidopsis thaliana. Front. Plant Sci. 3, 66.
  • Kanamori, N., Madsen, L.H., Radutoiu, S. et al. (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl Acad. Sci. USA, 103, 359364.
  • Kawaguchi, R. and Bailey-Serres, J. (2002) Regulation of translational initiation in plants. Curr. Opin. Plant Biol. 5, 460465.
  • Kawaguchi, R. and Bailey-Serres, J. (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res. 33, 955965.
  • Kawaguchi, R., Girke, T., Bray, E.A. and Bailey-Serres, J. (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J. 38, 823839.
  • Kiss, E., Oláh, B., Kaló, P. et al. (2009) LIN, a novel type of U-Box/WD40 protein, controls early infection by rhizobia in legumes. Plant Physiol. 151, 12391249.
  • Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crete, P., Voinnet, O. and Robaglia, C. (2009) Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell, 21, 17621768.
  • Lee, D.Y., Deng, Z., Wang, C.H. and Yang, B.B. (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl Acad. Sci. USA, 104, 2035020355.
  • Lelandais-Briere, C., Naya, L., Sallet, E., Calenge, F., Frugier, F., Hartmann, C., Gouzy, J. and Crespi, M. (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell, 21, 27802796.
  • Lévy, J., Bres, C., Geurts, R. et al. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 303, 13611364.
  • Li, H., Deng, Y., Wu, T., Subramanian, S. and Yu, O. (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol. 153, 17591770.
  • Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T. and Geurts, R. (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 302, 630633.
  • Limpens, E., Ovchinnikova, E., Journet, E.P. et al. (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol. Plant Microbe Interact. 24, 13331344.
  • Liu, M.J., Wu, S.H. and Chen, H.M. (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol. Syst. Biol. 8, 566.
  • Lohar, D.P., Sharopova, N., Endre, G., Penuela, S., Samac, D., Town, C., Silverstein, K.A. and VandenBosch, K.A. (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 140, 221234.
  • Manni, I., Caretti, G., Artuso, S., Gurtner, A., Emiliozzi, V., Sacchi, A., Mantovani, R. and Piaggio, G. (2008) Posttranslational regulation of NF-YA modulates NF-Y transcriptional activity. Mol. Biol. Cell, 19, 52035213.
  • Mantovani, R. (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene, 239, 1527.
  • Marsh, J.F., Rakocevic, A., Mitra, R.M., Brocard, L., Sun, J., Eschstruth, A., Long, S.R., Schultze, M., Ratet, P. and Oldroyd, G.E. (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol. 144, 324335.
  • Maunoury, N., Redondo-Nieto, M., Bourcy, M. et al. (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE, 5, e9519.
  • Meade, H.M. and Signer, E.R. (1977) Genetic mapping of Rhizobium meliloti. Proc. Natl Acad. Sci. USA, 74, 20762078.
  • Messinese, E., Mun, J.-H., Yeun, L.H. et al. (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol. Plant Microbe Interact. 20, 912921.
  • Middleton, P.H., Jakab, J., Penmetsa, R.V. et al. (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell, 19, 12211234.
  • Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc. Natl Acad. Sci. USA, 101, 47014705.
  • Mittler, R., Feng, X. and Cohen, M. (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell, 10, 461473.
  • Moreau, S., Verdenaud, M., Ott, T., Letort, S., de Billy, F., Niebel, A., Gouzy, J., de Carvalho-Niebel, F. and Gamas, P. (2011) Transcription reprogramming during root nodule development in Medicago truncatula. PLoS ONE, 6, e16463.
  • Mustroph, A., Juntawong, P. and Bailey-Serres, J. (2009a) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol. Biol. 553, 109126.
  • Mustroph, A., Zanetti, M.E., Jang, C.J., Holtan, H.E., Repetti, P.P., Galbraith, D.W., Girke, T. and Bailey-Serres, J. (2009b) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc. Natl Acad. Sci. USA, 106, 1884318848.
  • Mustroph, A., Lee, S.C., Oosumi, T., Zanetti, M.E., Yang, H., Ma, K., Yaghoubi-Masihi, A., Fukao, T. and Bailey-Serres, J. (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol. 152, 14841500.
  • Oldroyd, G.E.D., Murray, J.D., Poole, P.S. and Downie, J.A. (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119144.
  • Onouchi, H., Nagami, Y., Haraguchi, Y., Nakamoto, M., Nishimura, Y., Sakurai, R., Nagao, N., Kawasaki, D., Kadokura, Y. and Naito, S. (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 17991810.
  • Peltzer Meschini, E.P., Blanco, F.A., Zanetti, M.E., Beker, M.P., Kuster, H., Puhler, A. and Aguilar, O.M. (2008) Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis revealed by suppressive subtractive hybridization. Mol. Plant Microbe Interact. 21, 459468.
  • Quandt, H.J., Pühler, A. and Broer, I. (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol. Plant Microbe Interact. 6, 699706.
  • Ribeiro, D.M., Araujo, W.L., Fernie, A.R., Schippers, J.H. and Mueller-Roeber, B. (2012) Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J. Exp. Bot. 63, 27692786.
  • Saito, K., Yoshikawa, M., Yano, K. et al. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell, 19, 610624.
  • Shimomura, K., Nomura, M., Tajima, S. and Kouchi, H. (2006) LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. Plant Cell Physiol. 47, 15721581.
  • Sieberer, B.J., Chabaud, M., Timmers, A.C., Monin, A., Fournier, J. and Barker, D.G. (2009) A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol. 151, 11971206.
  • Spahn, C.M., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A., Blobel, G. and Frank, J. (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae tRNA-ribosome and subunit-subunit interactions. Cell, 107, 373386.
  • Thermann, R. and Hentze, M.W. (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature, 447, 875878.
  • Timmers, A.C., Auriac, M.C. and Truchet, G. (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development, 126, 36173628.
  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034research0034.0011.
  • Voinnet, O. (2009) Origin, biogenesis, and activity of plant microRNAs. Cell, 136, 669687.
  • Williams, A.J., Werner-Fraczek, J., Chang, I.F. and Bailey-Serres, J. (2003) Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol. 132, 20862097.
  • Yang, L., Wu, G. and Poethig, R.S. (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc. Natl Acad. Sci. USA, 109, 315320.
  • Zanetti, M.E., Chang, I.F., Gong, F., Galbraith, D.W. and Bailey-Serres, J. (2005) Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624635.
  • Zanetti, M.E., Blanco, F.A., Beker, M.P., Battaglia, M. and Aguilar, O.M. (2010) A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean-Rhizobium etli symbiosis. Plant Cell, 22, 41424157.
  • Zhai, J., Jeong, D.-H., De Paoli, E. et al. (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25, 25402553.