SEARCH

SEARCH BY CITATION

References

  • Augustine, R.C., Vidali, L., Kleinman, K.P. and Bezanilla, M. (2008) Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J. 54, 863875.
  • Bridgman, P.C. (1999) Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 10451060.
  • Cai, G. and Cresti, M. (2009) Organelle motility in the pollen tube: a tale of 20 years. J. Exp. Bot. 60, 495508.
  • Campellone, K.G. and Welch, M.D. (2010) A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237251.
  • Cardenas, L., Lovy-Wheeler, A., Kunkel, J.G. and Hepler, P.K. (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol. 146, 16111621.
  • Chen, T., Teng, N., Wu, X., Wang, Y., Tang, W., Samaj, J., Baluska, F. and Lin, J. (2007) Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant Cell Physiol. 48, 1930.
  • Cheney, R.E., O'Shea, M.K., Heuser, J.E., Coelho, M.V., Wolenski, J.S., Espreafico, E.M., Forscher, P., Larson, R.E. and Mooseker, M.S. (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell, 75, 1323.
  • Cole, R.A. and Fowler, J.E. (2006) Polarized growth: maintaining focus on the tip. Curr. Opin. Plant Biol. 9, 579588.
  • Eklund, D.M., Svensson, E.M. and Kost, B. (2010) Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth. J. Exp. Bot. 61, 19171937.
  • Eppinga, R.D., Peng, I.F., Lin, J.L., Wu, C.F. and Lin, J.J. (2008) Opposite effects of overexpressed myosin Va or heavy meromyosin Va on vesicle distribution, cytoskeleton organization, and cell motility in nonmuscle cells. Cell Motil. Cytoskeleton, 65, 197215.
  • Evans, L.L., Lee, A.J., Bridgman, P.C. and Mooseker, M.S. (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J. Cell Sci. 111(Pt 14), 20552066.
  • Fasshauer, D., Sutton, R.B., Brunger, A.T. and Jahn, R. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA, 95, 1578115786.
  • Finka, A., Schaefer, D.G., Saidi, Y., Goloubinoff, P. and Zryd, J.P. (2007) In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens. New Phytol. 174, 6376.
  • Fu, Y., Wu, G. and Yang, Z. (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J. Cell Biol. 152, 10191032.
  • Furt, F., Lemoi, K., Tuzel, E. and Vidali, L. (2012) Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC Plant Biol. 12, 70.
  • Ghil, M., Allen, M.R., Dettinger, M.D. et al. (2002) Advanced spectral methods for climatic time series. Rev. Geophys. 40, 1003.
  • Gilroy, S. and Jones, D.L. (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 5, 5660.
  • Gouin, E., Welch, M.D. and Cossart, P. (2005) Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 3545.
  • Govindan, B., Bowser, R. and Novick, P. (1995) The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol. 128, 10551068.
  • Haglund, C.M., Choe, J.E., Skau, C.T., Kovar, D.R. and Welch, M.D. (2010) Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12, 10571063.
  • Harries, P.A., Pan, A. and Quatrano, R.S. (2005) Actin-related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in Physcomitrella patens. Plant Cell, 17, 23272339.
  • Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 11291133.
  • Heindl, J.E., Saran, I., Yi, C.R., Lesser, C.F. and Goldberg, M.B. (2010) Requirement for formin-induced actin polymerization during spread of Shigella flexneri. Infect. Immun. 78, 193203.
  • Hepler, P.K., Vidali, L. and Cheung, A.Y. (2001) Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17, 159187.
  • HoldawayClarke, T.L., Feijo, J.A., Hackett, G.R., Kunkel, J.G. and Hepler, P.K. (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell, 9, 19992010.
  • Hong, W. (2005) SNAREs and traffic. Biochim. Biophys. Acta, 1744, 493517.
  • Hwang, J.U., Gu, Y., Lee, Y.J. and Yang, Z.B. (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol. Biol. Cell, 16, 53855399.
  • Kenrick, P. and Crane, P.R. (1997) The origin and early evolution of plants on land. Nature, 389, 3339.
  • Liu, Y.C. and Vidali, L. (2011) Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. J. Vis. Exp. 50, 2560.
  • Ma, L., Cantley, L.C., Janmey, P.A. and Kirschner, M.W. (1998) Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 11251136.
  • McKenna, S.T., Kunkel, J.G., Bosch, M., Rounds, C.M., Vidali, L., Winship, L.J. and Hepler, P.K. (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell, 21, 30263040.
  • Menand, B., Calder, G. and Dolan, L. (2007) Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. J. Exp. Bot. 58, 18431849.
  • Messerli, M.A., Creton, R., Jaffe, L.F. and Robinson, K.R. (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev. Biol. 222, 8498.
  • Monshausen, G.B., Bibikova, T.N., Messerli, M.A., Shi, C. and Gilroy, S. (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc. Natl. Acad. Sci. USA, 104, 2099621001.
  • Monshausen, G.B., Messerli, M.A. and Gilroy, S. (2008) Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol. 147, 16901698.
  • Ojangu, E.L., Järve, K., Paves, H. and Truve, E. (2007) Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma, 230, 193202.
  • Peremyslov, V.V., Prokhnevsky, A.I., Avisar, D. and Dolja, V.V. (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol. 146, 11091116.
  • Peremyslov, V.V., Prokhnevsky, A.I. and Dolja, V.V. (2010) Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell, 22, 18831897.
  • Peremyslov, V.V., Klocko, A.L., Fowler, J.E. and Dolja, V.V. (2012) Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Front. Plant Sci. 3, 184.
  • Perroud, P.F. and Quatrano, R.S. (2006) The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil. Cytoskeleton, 63, 162171.
  • Perroud, P.F. and Quatrano, R.S. (2008) BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. Plant Cell, 20, 411422.
  • Prekeris, R. and Terrian, D.M. (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J. Cell Biol. 137, 15891601.
  • Prokhnevsky, A.I., Peremyslov, V.V. and Dolja, V.V. (2008) Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc. Natl Acad. Sci. USA, 105, 1974419749.
  • Reck-Peterson, S.L., Novick, P.J. and Mooseker, M.S. (1999) The tail of a yeast class V myosin, myo2p, functions as a localization domain. Mol. Biol. Cell, 10, 10011017.
  • Rossi, G. and Brennwald, P. (2011) Yeast homologues of lethal giant larvae and type V myosin cooperate in the regulation of Rab-dependent vesicle clustering and polarized exocytosis. Mol. Biol. Cell, 22, 842857.
  • Sanderfoot, A. (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 617.
  • Santiago-Tirado, F.H., Legesse-Miller, A., Schott, D. and Bretscher, A. (2011) PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev. Cell, 20, 4759.
  • Schott, D., Ho, J., Pruyne, D. and Bretscher, A. (1999) The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791808.
  • Schuh, M. (2011) An actin-dependent mechanism for long-range vesicle transport. Nat. Cell Biol. 13, 14311436.
  • Sparkes, I.A. (2010) Motoring around the plant cell: insights from plant myosins. Biochem. Soc. Trans. 38, 833838.
  • Sutton, R.B., Fasshauer, D., Jahn, R. and Brunger, A.T. (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature, 395, 347353.
  • Tauhata, S.B., dos Santos, D.V., Taylor, E.W., Mooseker, M.S. and Larson, R.E. (2001) High affinity binding of brain myosin-Va to F-actin induced by calcium in the presence of ATP. J. Biol. Chem. 276, 3981239818.
  • Taunton, J., Rowning, B.A., Coughlin, M.L., Wu, M., Moon, R.T., Mitchison, T.J. and Larabell, C.A. (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519530.
  • Ueda, H., Yokota, E., Kutsuna, N., Shimada, T., Tamura, K., Shimmen, T., Hasezawa, S., Dolja, V.V. and Hara-Nishimura, I. (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc. Natl. Acad. Sci. USA, 107, 68946899.
  • Uemura, T., Ueda, T., Ohniwa, R.L., Nakano, A., Takeyasu, K. and Sato, M.H. (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 4965.
  • Verchot-Lubicz, J. and Goldstein, R.E. (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma, 240, 99107.
  • Vidali, L., McKenna, S.T. and Hepler, P.K. (2001) Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell, 12, 25342545.
  • Vidali, L., Augustine, R.C., Kleinman, K.P. and Bezanilla, M. (2007) Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell, 19, 37053722.
  • Vidali, L., Rounds, C.M., Hepler, P.K. and Bezanilla, M. (2009a) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONe, 4, e5744.
  • Vidali, L., van Gisbergen, P.A.C., Guerin, C., Franco, P., Li, M., Burkart, G.M., Augustine, R.C., Blanchoin, L. and Bezanilla, M. (2009b) Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl. Acad. Sci. USA, 106, 1334113346.
  • Vidali, L., Burkart, G.M., Augustine, R.C., Kerdavid, E., Tuzel, E. and Bezanilla, M. (2010) Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell, 22, 18681882.
  • Zang, J.H. and Spudich, J.A. (1998) Myosin II localization during cytokinesis occurs by a mechanism that does not require its motor domain. Proc. Natl. Acad. Sci. USA 95, 1365213657.
  • Zarsky, V., Cvrckova, F., Potocky, M. and Hala, M. (2009) Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytol. 183, 255272.
  • Zilberman, Y., Alieva, N.O., Miserey-Lenkei, S., Lichtenstein, A., Kam, Z., Sabanay, H. and Bershadsky, A. (2011) Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics. Mol. Biol. Cell, 22, 29002911.