SEARCH

SEARCH BY CITATION

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • Aoki, S., Uehara, K., Imafuku, M., Hasebe, M. and Ito, M. (2004) Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. J. Plant. Res. 117, 229244.
  • Baum, D.A., Doebley, J., Irish, V.F. and Kramer, E.M. (2002) Response: missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 7, 2231.
  • Becker, A., Kaufmann, K., Freialdenhoven, A., Vincent, C., Li, M.A., Saedler, H. and Theissen, G. (2002) A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol. Genet. Genomics 266, 942950.
  • Benlloch, R., Navarro, C., Beltrán, J.P. and Cañas, L.A. (2003) Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex. Plant Reprod. 15, 231241.
  • Benlloch, R., d'Erfurth, I., Ferrándiz, C., Cosson, V., Beltrán, J.P., Cañas, L.A., Kondorosi, A., Madueño, F. and Ratet, P. (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 142, 972983.
  • Benlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R.V., Beltrán, J.P., Cañas, L.A., Ratet, P. and Madueño, F. (2009) Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J. 60, 102111.
  • Berbel, A., Navarro, C., Ferrándiz, C., Cañas, L.A., Beltrán, J.P. and Madueño, F. (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139, 174185.
  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1989) Genes directing flower development in Arabidopsis. Plant Cell 1, 3752.
  • Broholm, S.K., Pöllänen, E., Ruokolainen, S., Tähtiharnu, S., Kotilainen, M., Albert, V.A., Elomaa, P. and Teen, T.H. (2010) Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. J. Exp. Bot. 61, 7585.
  • Cheng, X., Wen, J., Tadege, M., Ratet, P. and Mysore, K.S. (2011) Reverse genetics in Medicago truncatula using Tnt1 insertion mutants. Methods Mol. Biol. 678, 179190.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls. Genetic interactions controlling flower development. Nature 353, 3137.
  • Coronado, C., Zuanazzi, J.A.S., Sallaud, C., Quirion, J.-C., Esnault, R., Husson, H.-P., Kondorosi, A. and Ratet, P. (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol. 108, 533542.
  • Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 1921.
  • Drea, S., Hileman, L., de Martino, G. and Irish, V. (2007) Functional analyses of genetic pathways controlling petal specification in poppy. Development 134, 41574166.
  • d'Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A. and Ratet, P. (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J. 34, 95106.
  • Ferrándiz, C., Navarro, C., Gómez, M.D., Cañas, L.A. and Beltrán, J.P. (1999) Flower development in Pisum sativum: from the war of the whorls to the battle of the common primordia. Dev. Genet. 25, 280290.
  • Ferrándiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725734.
  • Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L. and Postlethwait, J. (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 15311545.
  • Geuten, K. and Irish, V. (2010) Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell 22, 25622578.
  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 15481560.
  • Hartweck, L.M., Scott, C.L. and Olszewski, N.E. (2002) Two O–linked N–acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics 161, 12791291.
  • Heard, J. and Dunn, K. (1995) Symbiotic induction of a MADS-box gene during development of alfalfa root-nodules. Proc. Natl. Acad. Sci. USA, 92, 52735277.
  • Hecht, V., Foucher, F., Ferrandiz, C. et al. (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 137, 14201434.
  • Hewitt, Y.M. (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, UK: Commonwealth Agricultural Bureaux.
  • Hughes, A.L. (1994) The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci. 256, 119124.
  • Irish, V.F. (2006) Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. Adv. Bot. Res. 44, 129161.
  • Jack, T., Fox, G.L. and Meyerowitz, E.M. (1994) Homeotic gene APETALA3 ectopic expression. Transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76, 703716.
  • James, P., Halladay, J. and Craiges, E. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 14251436.
  • Kim, S.T., Yoo, M.J., Albert, V.A., Farris, J.S., Soltis, P.S. and Soltis, D.E. (2004) Phylogeny and diversification of B–function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am. J. Bot. 91, 21022118.
  • Kramer, E.M. and Irish, V.F. (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Plant Sci. 161, S29S40.
  • Kramer, E.M., Dorit, R.L. and Irish, V.F. (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765783.
  • Kramer, E.M., Di Stilio, V.S. and Schluter, P. (2003) Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 111.
  • Kramer, E.M., Su, H.-J., Wu, J.M. and Hu, J.M. (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol. Biol. 6, 30.
  • Lamb, R.S. and Irish, V.F. (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl Acad. Sci. USA 100, 65586563.
  • Liu, Y., Nakayama, N., Schiff, M., Litt, A., Irish, V.F. and Dinesh-Kumar, S.P. (2004) Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol. Biol. 54, 701711.
  • Lynch, M. and Force, A. (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459473.
  • Lynch, M., O'Hely, M., Walsh, B. and Force, A. (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159, 17891804.
  • de Martino, G., Pan, I., Emmanuel, E., Levy, A. and Irish, V.F. (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18, 18331845.
  • Ohno, S. (1970) Evolution by Gene Duplication. Heidelberg, Germany: Springer-Verlag.
  • Páez-Valencia, J., Sanchez-Gomez, C., Valencia-Mayoral, P., Contreras-Ramos, A., Hernandez-Lucas, I., Orozco-Segovia, A. and Gamboa-DeBuen, A. (2008) Localization of the MADS domain transcriptional factor NMH7 during seed, seedling and nodule development of Medicago sativa. Plant Sci. 175, 596603.
  • Perbal, M.C., Haughn, G., Saedler, H. and Schwarz-Sommer, Z. (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122, 34333441.
  • Pnueli, L., Abuabeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z. and Lifschitz, E. (1991) The MADS box gene family in tomato – temporal expression during floral development, conserved secondary structures and homology with homeotic genes from antirrhinum and arabidopsis. Plant J. 1, 255266.
  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl Acad. Sci. USA, 93, 47934798.
  • Rijpkema, A.S., Royaert, S., Zethof, J., van der Weerden, G., Gerats, T. and Vandenbussche, M. (2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 18191832.
  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lönnig, W.E., Saedler, H. and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS. Evidence for DNA binding and autorregulation of its persistent expression throughout flower development. EMBO J. 11, 251263.
  • Soltis, P.S., Brockington, S.F., Yoo, M.J., Piedrahita, A., Latvis, M., Moore, M.J., Chanderbali, A.S. and Soltis, D.E. (2009) Floral variation and floral genetics in basal angiosperms. Am. J. Bot. 96, 110128.
  • Sommer, H., Beltán, J.P., Huijser, P., Pape, H., Lonning, W.E., Saedler, H. and Schwarz-Sommer, Z. (1990) DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus. The protein shows homology to transcription factors. EMBO J. 9, 605613.
  • Stellari, G.M., Jaramillo, M.A. and Kramer, E.M. (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box containing genes in basal angiosperms. Mol. Biol. Evol. 21, 506519.
  • Tadege, M., Ratet, P. and Mysore, K.S. (2005) Insertional mutagenesis: a Swiss army knife for functional genomics of Medicago truncatula. Trends Plant Sci. 10, 229235.
  • Tadege, M., Wen, J.Q., He, J. et al. (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 54, 335347.
  • Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 15961599.
  • Taylor, S.A, . Hofer, J.M.I. and Murfet, I.C. (2001) Stamina pistilloida, the pea orthologue of Fim and UFO, is required for normal development of flowers, inflorescences and leaves. Plant Cell 13, 3146.
  • Theissen, G. and Melzer, R. (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. 100, 603619.
  • Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonning, W.E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1992) GLOBOSA, a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 46934704.
  • Tucker, S.C. (2003) Floral development in legumes. Plant Plysiol. 131, 911926.
  • Urbanus, S.L., de Folter, S., Shchennikova, A.V., Kaufmann, K., Immink, R.G.H. and Angenent, G. (2009) In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 9, 5.
  • Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K. and Gerats, T. (2004) The duplicated B–class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16, 741754.
  • Wesley, S.V., Helliwell, C.A., Smith, N.A. et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581590.
  • Wu, C.X., Ma, Q.B., Yam, K.M., Cheung, M.Y., Xu, Y.Y., Han, T.F., Lam, H.M. and Chong, K. (2006) In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max L. Merr.) flowering reversion system. Planta 223, 725735.