SEARCH

SEARCH BY CITATION

References

  • Benjak, A., Boue, S., Forneck, A. and Casacuberta, J.M. (2009) Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biol. Evol. 1, 7584.
  • Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289300.
  • Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Beltran, J.P. and Madueno, F. (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139, 174185.
  • Chaib, J., Torregrosa, L., Mackenzie, D., Corena, P., Bouquet, A. and Thomas, M.R. (2010) The grape microvine – a model system for rapid forward and reverse genetics of grapevines. Plant J. 62, 10831092.
  • Cong, B., Liu, J. and Tanksley, S.D. (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc. Natl Acad. Sci. USA, 99, 1360613611.
  • Coombe, B.G. (1976) The development of fleshy fruits. Annu. Rev. Plant Physiol. 27, 507528.
  • Dauelsberg, P., Matus, J.T., Poupin, M.J., Leiva-Ampuero, A., Godoy, F., Vega, A. and Arce-Johnson, P. (2011) Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine. J. Plant Physiol. 168, 16671674.
  • Fernandez, L., Doligez, A., Lopez, G., Thomas, M.R., Bouquet, A. and Torregrosa, L. (2006a) Somatic chimerism, genetic inheritance, and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L.). Genome, 49, 721728.
  • Fernandez, L., Romieu, C., Moing, A., Bouquet, A., Maucourt, M., Thomas, M.R. and Torregrosa, L. (2006b) The grapevine fleshless berry mutation A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol. 140, 537547.
  • Fernandez, L., Torregrosa, L., Terrier, N., Sreekantan, L., Grimplet, J., Davies, C., Thomas, M.R., Romieu, C. and Ageorges, A. (2007) Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol. Biol. 63, 307323.
  • Fernandez, L., Torregrosa, L., Segura, V., Bouquet, A. and Martinez-Zapater, J.M. (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J. 61, 545557.
  • Ferrandiz, C. (2011) Fruit structure and diversity. In eLS. Chichester: John Wiley & Sons Ltd, doi: 10.1002/9780470015902.a0002044.pub2.
  • Feschotte, C., Jiang, N. and Wessler, S.R. (2002) Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3, 329341.
  • Feschotte, C., Swamy, L. and Wessler, S.R. (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics, 163, 747758.
  • Frary, A., Nesbitt, T.C., Grandillo, S., Knaap, E., Cong, B., Liu, J., Meller, J., Elber, R., Alpert, K.B. and Tanksley, S.D. (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289, 8588.
  • Giovannoni, J.J. (2004) Genetic regulation of fruit development and ripening. Plant Cell, 16, S170S180.
  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 15481560.
  • Grimplet, J., Van Hemert, J., Carbonell-Bejerano, P., Díaz-Riquelme, J., Dickerson, J., Fennell, A., Pezzotti, M. and Martínez-Zapater, J.M. (2012) Comparative analysis of grapevine whole-genome predictions, functional annotation and categorization of the predicted gene sequences. BMC Res. Notes, 5, 213.
  • Gupta, M., Yates, C.R. and Meibohm, B. (2005) SYBR Green-based real-time PCR allelic discrimination assay for β2-adrenergic receptor polymorphisms. Anal. Biochem. 344, 292294.
  • Jaillon, O., Aury, J.M., Noel, B. et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463465.
  • Jenik, P.D. and Irish, V.F. (2000) Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development, 127, 12671276.
  • Krizek, B.A. and Meyerowitz, E.M. (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 122, 1122.
  • Lamb, R.S. and Irish, V.F. (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl Acad. Sci. USA, 100, 65586563.
  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newberg, L.A. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174181.
  • Lijavetzky, D., Carbonell-Bejerano, P., Grimplet, J., Bravo, G., Flores, P., Fenoll, J., Hellin, P., Oliveros, J.C. and Martinez-Zapater, J.M. (2012) Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS ONE, 7, e39547.
  • Liu, J., Van Eck, J., Cong, B. and Tanksley, S.D. (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl Acad. Sci. USA, 99, 1330213306.
  • Lu, S., Fan, Y., Liu, L., Liu, S., Zhang, W. and Meng, Z. (2010) Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis. J. Plant Physiol. 167, 16131621.
  • Mara, C.D. and Irish, V.F. (2008) Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol. 147, 707718.
  • Mara, C.D., Huang, T. and Irish, V.F. (2010) The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 22, 690702.
  • Munos, S., Ranc, N., Botton, E. et al. (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol. 156, 22442254.
  • Poupin, M.J., Federici, F., Medina, C., Matus, J.T., Timmermann, T. and Arce-Johnson, P. (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene, 404, 1024.
  • Reeves, P.H., Ellis, C.M., Ploense, S.E. et al. (2012) A regulatory network for coordinated flower maturation. PLoS Genet. 8, e1002506.
  • Sablowski, R.W. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93103.
  • Shi, Y., Zhang, X., Xu, Z.Y., Li, L., Zhang, C., Schlappi, M. and Xu, Z.Q. (2011) Influence of EARLl1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana. Plant Biol. 13, 731739.
  • Singh, D.P., Jermakow, A.M. and Swain, S.M. (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell, 14, 31333147.
  • Sreekantan, L., Torregrosa, L., Fernandez, L. and Thomas, M.R. (2006) VvMADS9, a class B MADS-box gene involved in grapevine flowering, shows different expression patterns in mutants with abnormal petal and stamen structures. Funct. Plant Biol. 33, 877886.
  • Sundstrom, J.F., Nakayama, N., Glimelius, K. and Irish, V.F. (2006) Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J. 46, 593600.
  • Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H. and Chen, H.H. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46, 11251139.
  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D. and Pindo, M. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE, 2, e1326.
  • Wuest, S.E., O'Maoileidigh, D.S., Rae, L., Kwasniewska, K., Raganelli, A., Hanczaryk, K., Lohan, A., Loftus, B., Graciet, E. and Wellmer, F. (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc. Natl Acad. Sci. USA, 109, 1345213457.
  • Yao, J., Dong, Y. and Morris, B.A. (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS box transcription factor. Proc. Natl Acad. Sci. USA, 98, 13061311.
  • Zhang, S.C., Yang, C.W., Peng, J.Z., Sun, S.L. and Wang, X.J. (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol. Biol. 69, 745759.