SEARCH

SEARCH BY CITATION

References

  • Ampomah-Dwamena, C., Morris, B.A., Sutherland, P., Veit, B. and Yao, J.L. (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 130, 605617.
  • Barry, C.S., Llop-Tous, M.I. and Grierson, D. (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123, 979986.
  • Castillejo, C., Romera-Branchat, M. and Pelaz, S. (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J. 43, 586596.
  • Causier, B., Schwarz-Sommer, Z. and Davies, B. (2010) Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21, 7379.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls - genetic interactions controlling flower development. Nature, 353, 3137.
  • Dandekar, A.M., Teo, G., Defilippi, B.G., Uratsu, S.L., Passey, A.J., Kader, A.A., Stow, J.R., Colgan, R.J. and James, D.J. (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res. 13, 373384.
  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 19351940.
  • Drummond, A.J., Ashton, B., Buxton, S. et al. (2010) Geneious v5.5.6. http://www.geneious.com.
  • Elitzur, T., Vrebalov, J., Giovannoni, J.J., Goldschmidt, E.E. and Friedman, H. (2010) The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J. Exp. Bot. 61, 15231535.
  • Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S. and Allan, A.C. (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49, 414427.
  • Fernandez, L., Romieu, C., Moing, A., Bouquet, A., Maucourt, M., Thomas, M.R. and Torregrosa, L. (2006) The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol. 140, 537547.
  • Fernandez, L., Torregrosa, L., Terrier, N., Sreekantan, L., Grimplet, J., Davies, C., Thomas, M.R., Romieu, C. and Ageorges, A. (2007) Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol. Biol. 63, 307323.
  • Flanagan, C.A. and Ma, H. (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol. 26, 581595.
  • Fujisawa, M., Nakano, T. and Ito, Y. (2011) Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol. 11, 26.
  • Gleave, A.P. (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 12031207.
  • Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696704.
  • Hallett, I.C., MacRae, E.A. and Wegrzyn, T.F. (1992) Changes in kiwifruit cell wall ultrastructure and cell packing during postharvest ripening. Int. J. Plant Sci. 153, 4960.
  • Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P. and Laing, W.A. (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 1, 1326.
  • Huang, H., Tudor, M., Weiss, C.A., Hu, Y. and Ma, H. (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol. 28, 549567.
  • Ito, Y., Kitagawa, M., Ihashi, N., Yabe, K., Kimbara, J., Yasuda, J., Ito, H., Inakuma, T., Hiroi, S. and Kasumi, T. (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 55, 212223.
  • Jack, T. (2001) Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6, 310316.
  • Janssen, B.J., Thodey, K., Schaffer, R.J. et al. (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 8, 16.
  • Johnston, J.W., Gunaseelan, K., Pidakala, P., Wang, M. and Schaffer, R.J. (2009) Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J. Exp. Bot. 60, 26892699.
  • Jones, D.T., Taylor, W.R. and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275282.
  • Jones, L., Seymour, G.B. and Knox, J.P. (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-d-galactan. Plant Physiol. 113, 14051412.
  • Knapp, S. (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot. 53, 20012022.
  • Leseberg, C.H., Eissler, C.L., Wang, X., Johns, M.A., Duvall, M.R. and Mao, L. (2008) Interaction study of MADS domain proteins in tomato. J. Exp. Bot. 59, 22532265.
  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1–AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484495.
  • Malcomber, S.T. and Kellogg, E.A. (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci. 10, 427435.
  • Mandel, M.A. and Yanofsky, M.F. (1998) The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex. Plant Reprod. 11, 2228.
  • Martel, C., Vrebalov, J., Tafelmeyer, P. and Giovannoni, J.J. (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 157, 15681579.
  • Nieuwenhuizen, N.J., Wang, M.Y., Matich, A.J., Green, S.A., Chen, X.Y., Yauk, Y.K., Beuning, L.L., Nagegowda, D.A., Dudareva, N. and Atkinson, R.G. (2009) Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J. Exp. Bot. 60, 32033219.
  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200203.
  • Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L. and Yanofsky, M.F. (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26, 385394.
  • Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. and Lifschitz, E. (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell, 6, 175186.
  • Pratt, C. (1988) Apple flower and fruit: morphology and anatomy. In Horticulturals Reviews 10 (Janick, J., ed.). Hoboken, NJ: Wiley, pp. 273308.
  • Rohrer, J.R., Robertson, K.R. and Phipps, J.B. (1991) Variation in structure among fruits of Maloideae (Rosaceae). Am. J. Bot. 78, 16171635.
  • Sass, J.E. (1958) Botanical Microtechnique, 3rd edn. Ames, IA: Iowa State University Press.
  • Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS-box genes and the floral organ identity genes. Plant Cell, 7, 721733.
  • Schaffer, R.J., Friel, E.N., Souleyre, E.J.F. et al. (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol. 144, 18991912.
  • Seymour, G.B., Ryder, C.D., Cevik, V., Hammond, J.P., Popovich, A., King, G.J., Vrebalov, J., Giovannoni, J.J. and Manning, K. (2011) A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. J. Exp. Bot. 62, 11791188.
  • Smyth, D.R. (2005) Morphogenesis of flowers – our evolving view. Plant Cell, 17, 330341.
  • Sung, S.K. and An, G.H. (1997) Molecular cloning and characterization of a MADS-box cDNA clone of the Fuji apple. Plant Cell Physiol. 38, 484489.
  • Sung, S.K., Yu, G.H., Nam, J., Jeong, D.H. and An, G. (2000) Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta, 210, 519528.
  • Sutherland, P., Hallett, I. and Jones, M. (2009) Probing cell wall structure and development by the use of antibodies: a personal perspective. NZ J. Forest. Sci. 39, 197205.
  • Tacken, E., Ireland, H., Gunaseelan, K. et al. (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol. 153, 294305.
  • Tadiello, A., Pavanello, A., Zanin, D., Caporali, E., Colombo, L., Rotino, G.L., Trainotti, L. and Casadoro, G. (2009) A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. J. Exp. Bot. 60, 651661.
  • Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U. and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115149.
  • Velasco, R., Zharkikh, A., Affourtit, J. et al. (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833839.
  • Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W. and Giovannoni, J. (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 296, 343346.
  • Vrebalov, J., Pan, I.L., Arroyo, A.J.M. et al. (2009) Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell, 21, 30413062.
  • Wiersma, P.A., Zhang, H.Y., Lu, C.W., Quail, A. and Toivonen, P.M.A. (2007) Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of ‘Sunrise’ and ‘Golden Delicious’ apple fruit. Postharvest Biol. Technol. 44, 204211.
  • Xu, Y., Zhang, L., Xie, H., Zhang, Y.Q., Oliveira, M.M. and Ma, R.C. (2008) Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch). Tree Genet. Genomes, 4, 693703.
  • Yao, J.-L., Cohen, D., Atkinson, R., Richardson, K. and Morris, B. (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14, 407412.
  • Yao, J.L., Dong, Y.H., Kvarnheden, A. and Morris, B. (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J. Am. Soc. Hortic. Sci. 124, 813.
  • Yao, J.L., Dong, Y.H. and Morris, B.A.M. (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc. Natl Acad. Sci. USA, 98, 13061311.
  • Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., DePamphilis, C.W. and Ma, H. (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169, 22092223.