SEARCH

SEARCH BY CITATION

References

  • Abdrakhamanova, A., Wang, Q.Y., Khokhlova, L. and Nick, P. (2003) ls microtubule assembly a trigger for cold acclimation? Plant Cell Physiol. 44, 676686.
  • Adames, N.R. and Cooper, J.A. (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863871.
  • Ahad, A., Wolf, J. and Nick, P. (2003) Activation-tagged tobacco mutants that are tolerant to antimicrotubular herbicides are cross-resistant to chilling stress. Transgenic Res. 12, 615629.
  • Akashi, T., Kawasaki, S. and Shibaoka, H. (1990) Stabilization of cortical microtubules by the cell wall in cultured tobacco cells. Effect of extensin on the cold stability of cortical microtubules. Planta, 182, 363369.
  • Akashi, T. and Shibaoka, H. (1987) Effects of gibberellin on the arrangement and the cold stability of cortical microtubules in epidermal cells of pea internodes. Plant Cell Physiol. 28, 339348.
  • Akhmanova, A. and Steinmetz, M.O. (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol. 9, 309322.
  • Atkin, R.K., Barton, G.E. and Robinson, D.K. (1973) Effect of root-growing temperature on growth substance in xylem exudate of Zea mays. J. Exp. Bot. 24, 475487.
  • Baluška, F., Šamaj, J., Wojtaszek, P., Volkmann, D. and Menzel, D. (2003) Cytoskeleton-plasma rnembrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol. 133, 482491.
  • Bartolo, M.E. and Carter, J.V. (1991a) Microtubules in the mesophyll cells of nonacclimated and cold-acclimated spinach. Plant Physiol. 97, 175181.
  • Bartolo, M.E. and Carter, J.V. (1991b) Effect of microtubule stabilization on the freezing tolerance of mesophyll cells of spinach. Plant Physiol. 97, 182187.
  • Bisgrove, S.R., Lee, Y.R.J., Liu, B., Peters, N.T. and Kropf, D.L. (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell, 20, 396410.
  • Björkman, T. (1988) Perception of gravity by plants. Adv. Bot. Res. 15, 14.
  • Braam, J. and Davis, R.W. (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 60, 357361.
  • Breviario, D. and Nick, P. (2000) Plant tubulins: a melting pot for basic questions and promising applications. Transgenic Res. 9, 383393.
  • Buder, J. (1920) Neue phototropische Fundamentalversuche. Ber. Dtsch. Bot. Ges. 38, 1019.
  • Burk, D.H. and Ye, Z.H. (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule severing protein. Plant Cell, 11, 21452160.
  • Cai, G. and Cresti, M. (2012) Are kinesins required for organelle trafficking in plant cells? Frontiers Plant Sci. 3, 170.
  • Chae, Y.C., Lee, S., Lee, H.Y., Heo, K., Kim, J.H., Kim, J.H., Suh, P.-G. and Ryu, S.H. (2005) Inhibition of muscarinic receptor-linked phospholipase D activation by association with tubulin. J. Biol. Chem. 280, 37233730.
  • Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W.J. and Munnik, T. (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15, 26662679.
  • Dhonukshe, P., Mathur, J., Hülskamp, M. and Gadella, T.W.J. (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol, 3, 1126.
  • Ding, J.P. and Pickard, B.G. (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 3, 83110.
  • Edwards, E.S. and Roux, S.J. (1994) Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii. Planta, 195, 150152.
  • Edwards, E.S. and Roux, S.J. (1997) The influence of gravity and light on developmental polarity of single cells of Ceratopteris richardii gametophytes. Biol. Bull. 192, 139140.
  • Ehrlicher, A.J., Nakamura, F., Hartwig, J.H., Weitz, D.A. and Stossel, T.P. (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature, 478, 260264.
  • Elinson, R.P. and Rowning, B. (1988) Transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128, 185197.
  • Evans, L. (1975) Crop Physiology. London: Cambridge University Press.
  • Fischer, K. and Schopfer, P. (1998) Physical strain-mediated microtubule reorientation in the epidermis of gravitropically or phototropically stimulated maize coleoptiles. Plant J. 15, 119123.
  • Fleming, A.J., McQueen-Mason, S. and Mandel, T. (1997) Induction of Leaf Primordia by the Cell Wall Protein Expansin. Science, 276, 14151418.
  • Frey, N., Klotz, J. and Nick, P. (2009) Dynamic bridges - a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol. 50, 14931506.
  • Frey, N., Klotz, J. and Nick, P. (2010) A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J. Exp. Bot. 61, 34233437.
  • Fujita, M., Himmelspach, R., Hocart, C.H., Williamson, R.E., Mansfield, S.D. and Wasteneys, G.O. (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J. 66, 915928.
  • Funada, R. (2008) Microtubules and the control of wood formation. Plant Cell Monogr. 11, 83119.
  • Gardiner, J.C., Harper, J.D., Weerakoon, N.D., Collings, D.A., Ritchie, S., Gilroy, S., Cyr, R.J. and Marc, J. (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell, 13, 21432158.
  • Gardiner, J., Collings, D.A., Harper, J.D. and Marc, J. (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol. 44, 687696.
  • Geitmann, A. and Ortega, J.K. (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci. 14, 467478.
  • Gens, J.S., Fujiki, M. and Pickard, B.G. (2000) Arabinogalactan protein and wall-associated kinase in a plasmalemma reticulum with specialized vertices. Protoplasma, 212, 115134.
  • Gerhart, J., Ubbeles, G., Black, S., Hara, K. and Kirschner, M. (1981) A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature, 292, 511516.
  • Giddings, T.H. and Staehelin, A. (1988) Spatial relationship between microtubules and plasmamembrane rosettes during the deposition of primary wall microfibrils in Closterium spec. Planta, 173, 2230.
  • Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993) Flexual rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923934.
  • Godbolé, R., Michalke, W., Nick, P. and Hertel, R. (2000) Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles. Plant Biol. 2, 176181.
  • Goebel, K. (1908) Einleitung in die Experimentelle Morphologie der Pflanzen. Leipzig: Teubner. pp. 21, 8251.
  • Green, P.B. (1962) Mechanism for plant cellular morphogenesis. Science, 138, 14011405.
  • Green, P.B. (1980) Organogenesis – a biophysical view. Annu. Rev. Plant Physiol. 3, 5182.
  • Guo, L., Devaiah, S.P., Narasimhan, R., Pan, X., Zhang, Y., Zhang, W. and Wang, X. (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell, 24, 22002212.
  • Gustin, M.C., Sachs, F., Sigurdson, W.J., Ruknudin, A. and Bowman, C. (1991) Technical comments. Single channel mechanosensitive currents. Science, 253, 11951197.
  • Gutjahr, C. and Nick, P. (2006) Acrylamide inhibits gravitropism and destroys microtubules in rice coleoptiles. Protoplasma, 227, 211222.
  • Hamant, O., Heisler, M.G., Jönsson, H. et al. (2008) Developmental patterning by mechanical signals in Arabidopsis. Science, 22, 16501655.
  • Hardham, A.R., Green, P.B. and Lang, J.M. (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formalion of Graptopetalum paraguayense. Planta, 149, 181195.
  • Heath, B. (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. Theor. Biol. 48, 445449.
  • Hertel, R. and Friedrich, U. (1973) Abhängigkeit der geotropischen Krümmung der Chara-Rhizoide von der Zentrifugalbeschleunigung. Z. Pflanzenphysiol. 70, 173184.
  • Himmelspach, R., Wymer, C.L., Lloyd, C.W. and Nick, P. (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J. 18, 449453.
  • Hirase, A., Hamada, T., Itoh, T.J., Shimmen, T. and Sonobe, S. (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol. 47, 10041009.
  • Hong, Y., Pan, X., Welti, R. and Wang, X. (2008) Phospholipase Dα3 Is Involved in the Hyperosmotic Response in Arabidopsis. Plant Cell, 20, 803816.
  • Ingber, D.E. (2003a) Tensegrity l: cell structurer and hierarchical systems biology. J. Cell Sci. 116, 11571173.
  • Ingber, D.E. (2003b) Tensegrity II: how structural networks influence cellular information processing networks. J. Cell Sci. 116, 13971403.
  • Irving, R.M. (1969) Characterization and role of an endogenous inhibitor in the induction of cold hardiness in Acer negundo. Plant Physiol. 44, 801805.
  • Irving, R.M. and Lanphear, F.O. (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol. 43, 913.
  • Jaffe, M.J., Leopold, A.C. and Staples, R.A. (2002) Thigmo responses in plants and fungi. Am. J. Bot. 89, 375382.
  • Janmey, P.A. and Weitz, D.A. (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29, 364370.
  • Jian, L.C., Sun, L.H. and Lin, Z.P. (1989) Studies on microtubule cold stability in relation to plant cold hardiness. Acta Bot. Sin. 31, 737741.
  • Katsuta, J. and Shibaoka, H. (1988) The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells. Plant Cell Physiol. 29, 403413.
  • Kazan, K. and Manners, J.M. (2008) Jasmonate signaling: toward an integrated view. Plant Physiol. 146, 14591468.
  • Kell, A. and Glaser, R.W. (1993) On the mechanical and dynamic properties of plant-cell membranes: their role in growth, direct gene transfer and protoplast fusion. J. Theor. Biol. 160, 4162.
  • Kerr, G.P. and Carter, J.V. (1990) Relationship between freezing tolerance of root-tip cells and cold stability of'microtubules in rye (Secale cereale L. cv Puma). Plant Physiol. 93, 7782.
  • King, S.M. (2002) Dyneins Motor on in Plants. Traffic, 3, 930931.
  • Klotz, J. and Nick, P. (2012) A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol. 193, 576589.
  • Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature, 352, 524526.
  • Koivusalo, M., Kappus, A. and Grinstein, S. (2009) Sensors, transducers, and effectors that regulate cell size and shape. J. Biol. Chem. 284, 65956599.
  • Komis, G., Apostolakos, P. and Galatis, B. (2002a) Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume corrtrol. Plant Cell Physiol. 43, 911922.
  • Komis, G., Apostolakos, P. and Galatis, B. (2002b) Hyperosmotic-stress induced actin filament reorganization in leaf cells of Chlorophytum comosum. J. Exp. Bot. 53, 16991710.
  • Komis, G., Quader, H., Galatis, B. and Apostolakos, P. (2006) Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum: involvement of phospholipase D. New Phytol. 171, 131150.
  • Kung, C. (2005) A possible unifying principle for mechanosensation. Nature, 436, 647654.
  • Kutschera, U. (2008) The outer epidermal wall: design and physiological role of a cornposite structure. Ann. Bot. 101, 615621.
  • Ledbetter, M.C. and Porter, K.R. (1963) A microtubule in plant cell fine stmcture. J. Cell Biol. 12, 239250.
  • Li, W., Li, M., Zhang, W., Welti, R. and Wang, X. (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnol. 22, 427433.
  • Li, S., Lei, L., Somerville, C.R. and Gua, Y. (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl Acad. Sci. USA, 109, 185190.
  • Lintilhac, P.M. (1999) Towards a theory of cellularity – speculations on the nature of the living cell. Bioscience, 49, 6068.
  • Lintilhac, P.M. and Vesecky, T.B. (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature, 307, 363364.
  • Livanos, P., Galatis, B., Quader, H. and Apostolakos, P. (2012) Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton, 69, 121.
  • Los, D.A. and Murata, N. (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta, 1666, 142157.
  • Lucas, J. and Shaw, S.L. (2008) Cortical microtubule arrays in the Arabidopsis seedling. Curr. Opin. Plant Biol. 11, 9498.
  • Lyons, J.M. (1973) Chilling injury in plants. Annu. Rev. Plant Physiol. 24, 445466.
  • Mazars, C., Thion, L., Thuleau, P., Graziana, A., Knight, M.R., Moreau, M. and Ranjeva, R. (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium, 22, 413420.
  • McAinsh, M.R. and Hetherington, A.M. (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci. 3, 3236.
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S. and Mittler, R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environm. 33, 453467.
  • Modig, C., Strömberg, E. and Wallin, M. (1994) Different stability of posttranslationally modified brain microtubules isolated from cold-temperate fish. Mol. Cell. Biochem. 130, 137147.
  • Monroy, A.F., Sarhan, F. and Dhindsa, R.S. (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression. Plant Physiol. 102,12211235.
  • Monteith, J.L. and Elston, L.F. (1971) Microclimatology and crop production. In Potential Crop Production (Wareing, P.F., Cooper, J.P., eds). London: Heinemann, pp. 129139.
  • Morris, N.R. (2003) Nuclear positioning: the means is at the ends. Curr. Opin. Cell Biol. 15, 5159.
  • Mulder, B., Schell, J. and Emons, A.M. (2004) How the geometrical model for plant cell wall formation enables the production of a random texture. Cellulose, 11, 395401.
  • Munnik, T., Arisz, S.A., De Vrije, T. and Musagrave, A. (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell, 7, 21972210.
  • Murata, T. and Wada, M. (1991) Effects of centrifugation on preprophase-band formation in Adiantum protonemata. Planta, 183, 391398.
  • Murata, N., lshizaki-Nishizawa, O., Higashi, H., Tasaka, Y. and Nishida, I. (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature, 356, 710713.
  • Nick, P. (2012) Microtubules and the Tax Payer. Protoplasma special issue Applied Plant Cell Biology. Protoplasma, 249(Suppl. 2), S81S94.
  • Nick, P. and Furuya, M. (1996) Buder revisited – cell and organ polarity during phototropism. Plant, Cell Environ. 19, 11791187.
  • Nick, P., Bergfeld, R., Schäfer, E. and Schopfer, P. (1990) Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta, 181, 162168.
  • Nick, P., Schäfer, E., Hertel, R. and Furuya, M. (1991) On the putative role of microtubules in gravitropism of maize coleoptiles. Plant Cell Physiol. 32, 873880.
  • Nick, P., Yatou, O., Furuya, M. and Lambert, A.M. (1994) Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant J. 6, 651663.
  • Niklas, K.J. and Spatz, H.-C. (2004) Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc. Natl Acad. Sci. USA, 101, 1566115663.
  • Orr, A.W., Helmke, B.P., Blackman, B.R. and Schwartz, M.A. (2006) Mechanisms of mechanotransduction. Dev. Cell, 10, 1120.
  • Papakonstanti, E.A., Vardaki, E.A. and Stournaras, C. (2000) Actin cytoskeleton: a signaling sensor in cell volume regulation. Cell. Physiol. Biochem. 10, 257264.
  • Paredez, A.R., Somerville, C.R. and Ehrhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312, 14911495.
  • Peters, N.T., Logan, K.O., Miller, A.C. and Kropf, D.L. (2007) Phospholipase D signaling regulates microtubule organization in the fucoid alga Silvetia compressa. Plant Cell Physiol. 48, 17641774.
  • Pickard, B.G. (2008) “Second extrinsic organizational mechanism” for orienting cellulose: modeling a role for the plasmalemmal reticulum. Protoplasma, 233, 129.
  • Pickard, B.G. and Fujiki, M. (2005) Ca2+ pulsation in BY-2 cells and evidence for control of mechanosensory Ca2+-selective channels by the plasmalemmal reticulum. Funct. Plant Biol. 32, 863879.
  • Pihakaski-Maunsbach, K. and Puhakainen, T. (1995) Effect of cold exposure on cortical microtubules of rye (Secale cereale) as observed by immunocytochemistry. Physiol. Plant. 93, 563571.
  • Pollard, T. and Borisy, G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453465.
  • Pont-Lezica, R.F., McNally, J.G. and Pickard, B.G. (1993) Wall-to-membrane linkers in onion epidermis – some hypotheses. Plant, Cell Environ. 16, 111123.
  • Preston, R.D. (1988) Cellulose-microfibril-orienting mechanisms in plant cell walls. Planta, 174, 6174.
  • Rikin, A., Waldman, M., Richmond, A.E. and Dovrat, A. (1975) Hormonal regulation of morphogenesis and cold resistance. I. Modifications by abscisic acid and gibberellic acid in alfalfa (Medicago sativa L.) seedlings. J. Exp. Bot. 26, 175183.
  • Rikin, A., Arsmon, D. and Gitler, C. (1980) Chilling injury in cotton (Gossypium hirsutum L.): effects of antimicrotubular drugs. Plant Cell Physiol. 21, 829837.
  • Robby, T. (1996) A new Architecture. New Haven: Yale Academic Press.
  • Ruelland, E., Cantrel, C., Gawer, M., Kader, J.-C. and Zachowski, A. (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. 130, 9991007.
  • Sachs, J. (1880) Stoff und Form der Pflanzenorgane. Arb. Bot. Inst. Würzburg, 2, 469479.
  • Sachs, F. and Morris, C.E. (1998) Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol. 132, 177.
  • Sakiyama, M. and Shibaoka, H. (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma, 157, 165171.
  • Sangwan, V., Foulds, I., Singh, J. and Dhindsa, R.S. (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton and requires Ca2+ influx. Plant J. 27, 112.
  • Savage, C., Hamelin, M., Culotti, J.G., Coulson, A., Albertson, D.G. and Chalfie, M. (1989) mec-7 is a β-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 3, 870881.
  • Schwuchow, J., Sack, F.D. and Hartmann, E. (1990) Microtubule disruption in gravitropic protonemata of the moss Ceratodon. Protoplasma, 159, 6069.
  • Seung, D., Webster, M.W., Wang, R., Andreeva, Z. and Marc, J. (2012) Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. Funct. Plant Biol. doi: 10.1071/FP12248.
  • Suzuki, K., Nagasuga, K. and Okada, M. (2008) The Chilling Injury Induced by High Root Temperature in the Leaves of Rice Seedlings. Plant Cell Physiol. 49, 433442.
  • Telewski, F.W. (2006) A unified hypothesis for mechanoperception in plants. Am. J. Bot. 93, 14661470.
  • Testerink, C. and Munnik, T. (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62, 23492361.
  • Thompson, D.W. (1959) On Growth and Form. Cambridge: Cambridge University Press, pp. 46, 5644.
  • Turing, A.M. (1952) The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B Biol. 237, 3772.
  • Uyttewaal, M., Burian, A., Alim, K. et al. (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell, 149, 439451.
  • Vöchting, H. (1878) Über Organbildung im Pflanzenreich. Bonn: Cohen.
  • Vogelmann, T.C., Bassel, A.R. and Miller, J.H. (1981) Effects of microtubule-inhibitors on nuclear migration and rhizoid formation in germinating fern spores (Onocleus sensibilis). Protoplasma, 109, 295316.
  • Walker, L.M. and Sack, F.D. (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta, 181, 7177.
  • Wang, Q.Y. and Nick, P. (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol. 42, 9991005.
  • Wang, N., Tytell, J.D. and Ingber, D.E. (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 7582.
  • Wang, S., Kurepa, J., Hashimoto, T. and Smalle, J.A. (2011) Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. Plant Cell, 23, 34123427.
  • Warren-Wilson, J.D. (1966) An analysis of plant growth and its control in the arctic environment. Ann. Bot. 30, 383402.
  • Watson, D.J. (1952) The physiological basis of variation in yield. Adv. Agron. 4, 101145.
  • Wickstead, B. and Gull, K. (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic, 8, 17081721.
  • Wolfe, J., Dowgert, M.F. and Steponkus, P.L. (1985) Dynamics of membrane exchange of the plasma membrane and the lysis of isolated protoplasts during rapid expansions in area. J. Membrane Biol. 86, 127138.
  • Wolfe, J., Dowgert, M.F. and Steponkus, P.L. (1986) Mechanical study of the deformation and rupture of the plasma membranes of protoplasts during osmotic expansions. J. Membrane Biol. 93, 6374.
  • Wyatt, S.E. and Carpita, N.C. (1993) The plant cytoskeleton – cell wall continuum. Trends Cell Biol. 3, 413417.
  • Wymer, C., Wymer, S.A., Cosgrove, D.J. and Cyr, R.J. (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol. 110, 425430.
  • Yamamoto, A. and Hiraoka, Y. (2003) Cytoplasmic dynein in fungi: insights from nuclear migration. J. Cell Sci. 116, 45014512.
  • Yoneda, A., Higaki, T., Kutsuna, N., Kondo, Y., Osada, H., Hasezawa, S. and Matsui, M. (2007) Chemical genetic screening identifies a novel inhibitor of parallel alignment of cortical microtubules and cellulose microfibrils. Plant Cell Physiol. 48, 13931403.
  • Yoneda, A., Ito, T., Higaki, T., Kutsuna, N., Saito, T., Ishimizu, T., Osada, H., Hasezawa, S., Matsui, M. and Demura, T. (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J. 64, 657667.
  • Zaban, B., Maisch, J. and Nick, P. (2012) Dynamic actin controls polarity induction de novo in protoplasts. J. Integr. Plant Biol. doi: 10.1111/jipb.12001.
  • Zhong, R., Burk, D.H., Morrison, W.H. III and Ye, Z.H. (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell, 14, 31013117.