SEARCH

SEARCH BY CITATION

References

  • Alawady, A.D. and Grimm, B. (2005) Tobacco Mg protoporphyrin IX methyltransferase is invovled in inverse activation of Mg porphyrin and protoheme synthesis. Plant J. 41(2), 282290.
  • Apel, K., Santel, H.J., Redlinger, T.E. and Falk, H. (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur. J. Biochem. 111, 251258.
  • Armstrong, G.A., Runge, S., Frick, G., Sperling, U. and Apel, K. (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 108, 15051517.
  • Barber, J., Morris, E. and Buchel, C. (2000) Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. Biochim. Biophys. Acta, 1459, 239247.
  • Benli, M., Schulz, R. and Apel, K. (1991) Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol. Biol. 16, 615625.
  • op den Camp, R.G., Przybyla, D., Ochsenbein, C. et al. (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell, 15, 23202332.
  • Chakraborty, N. and Tripathy, B.C. (1992) Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiol. 98, 711.
  • Darrah, P.M., Kay, S.A., Teakle, G.R. and Griffiths, W.T. (1990) Cloning and sequencing of protochlorophyllide reductase. Biochem. J. 265, 789798.
  • Engdahl, S., Aronsson, H., Sundqvist, C., Timko, M.P. and Dahlin, C. (2001) Association of the NADPH:protochlorophyllide oxidoreductase (POR) with isolated etioplast inner membranes from wheat. Plant J. 27, 297304.
  • Flagel, L.E. and Wendel, J.F. (2009) Gene duplication and evolutionary novelty in plants. New Phytol. 183, 557564.
  • Franck, F., Sperling, U., Frick, G., Pochert, B., van Cleve, B., Apel, K. and Armstrong, G.A. (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide alpha chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol. 124, 16781696.
  • Frick, G., Su, Q., Apel, K. and Armstrong, G.A. (2003) An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J. 35, 141153.
  • Fusada, N., Masuda, T., Kuroda, H., Shiraishi, T., Shimada, H., Ohta, H. and Takamiya, K. (2000) NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth. Res. 64, 147154.
  • Gadjev, I., Vanderauwera, S., Gechev, T.S., Laloi, C., Minkov, I.N., Shulaev, V., Apel, K., Inzé, D., Mittler, R. and Van Breusegem, F. (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141, 436445.
  • Griffiths, W.T. (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem. J. 174, 681692.
  • Grossman, A.R., Bhaya, D., Apt, K.E. and Kehoe, D.M. (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu. Rev. Genet. 29, 231288.
  • Han, S.H., Sakuraba, Y., Koh, H.J. and Paek, N.C. (2012) Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-Cis-lycopene and singlet oxygen. Mol. Cells, 33, 8797.
  • Henningsen, K.W. (1970) Macromolecular physiology of plastids VI. Changes in membrane structure associated with shifts in the absorption maxima of the chlorophyllous pigments. J. Cell Sci. 7, 587621.
  • Holtorf, H., Reinbothe, S., Reinbothe, C., Bereza, B. and Apel, K. (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc. Natl Acad. Sci. USA, 92, 32543258.
  • Hopkins, W.G. (1982) Formation of chloroplast pigments in a temperature-sensitive, virescent mutant of maize. Can. J. Bot. 60, 737740.
  • Hopkins, W.G. and Elfman, B. (1984) Temperature-induced chloroplast ribosome deficiency in virescent maize. J. Hered. 75, 207211.
  • Hukmani, P. and Tripathy, B.C. (1992) Spectrofluorometric estimation of intermediates of chlorophyll biosynthesis: protoporphyrin IX, Mg-protoporphyrin, and protochlorophyllide. Anal. Biochem. 206, 125130.
  • Iwamoto, K., Fukuda, H. and Sugiyama, M. (2001) Elimination of POR expression correlates with red leaf formation in Amaranthus tricolor. Plant J. 27, 275284.
  • Iwata, N. and Omura, T. (1975) Studies on the trisomics in rice plants (Oryza sativa L.) III. Relation between trisomics and genetic linkage groups. Jpn. J. Breed. 25, 363368.
  • Jeon, J.S., Lee, S., Jung, K.H. et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561570.
  • Jiang, H., Chen, Y., Li, M., Xu, X. and Wu, G. (2011) Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. J. Integr. Plant Biol. 53, 375387.
  • Kim, C., Meskauskiene, R., Apel, K. and Laloi, C. (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep. 9, 435439.
  • Li, J., Pandeya, D., Nath, K. et al. (2010) ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J. 62, 713725.
  • Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 351382.
  • Masuda, T. and Takamiya, K. (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth. Res. 81, 129.
  • Masuda, T., Fusada, N., Shiraishi, T., Kuroda, H., Awai, K., Shimada, H., Ohta, H. and Takamiya, K. (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth. Res. 74, 165172.
  • Masuda, T., Fusada, N., Oosawa, N. et al. (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol. 44, 963974.
  • Millerd, A. and McWilliam, J.R. (1968) Studies on a maize mutant sensitive to low temperature I. Influence of temperature and light on the production of chloroplast pigments. Plant Physiol. 43, 19671972.
  • Oosawa, N., Masuda, T., Awai, K., Fusada, N., Shimada, H., Ohta, H. and Takamiya, K. (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett. 474, 133136.
  • Paddock, T.N., Mason, M.E., Lima, D.F. and Armstrong, G.A. (2010) Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol. Biol. 72, 445457.
  • Paddock, T., Lima, D., Mason, M.E., Apel, K. and Armstrong, G.A. (2012) Arabidopsis light-dependent protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development. Plant Mol. Biol. 78, 447460.
  • Park, S.Y., Yu, J.W., Park, J.S. et al. (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 19, 16491664.
  • Pattanayak, G.K. and Tripathy, B.C. (2011) Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS ONE, 6(10), 113.
  • Reinbothe, C., Lebedev, N. and Reinbothe, S. (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature, 397, 8084.
  • Reinbothe, C., Buhr, F., Pollmann, S. and Reinbothe, S. (2003) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J. Biol. Chem. 278, 807815.
  • Ryberg, M. and Sundqvist, C. (1991) Structural and functional significance of pigment protein complexes of chlorophyll precursors. In Chlorophylls (Scheer, H., ed.). Boca Raton: CRC Press Inc, pp. 587612.
  • Schulz, R., Steinmuller, K., Klaas, M., Forreiter, C., Rasmussen, S., Hiller, C. and Apel, K. (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol. Gen. Genet. 217, 355361.
  • Schunmann, P.H. and Ougham, H.J. (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol. Biol. 31, 529537.
  • Sood, S., Gupta, V. and Tripathy, B.C. (2005) Photoregulation of the greening process of wheat seedlings grown in red light. Plant Mol. Biol. 59, 269287.
  • Spano, A.J., He, Z., Michel, H., Hunt, D.F. and Timko, M.P. (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol. Biol. 18, 967972.
  • Sperling, U., Franck, F., van Cleve, B., Frick, G., Apel, K. and Armstrong, G.A. (1998) Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell, 10, 283296.
  • Su, Q., Frick, G., Armstrong, G. and Apel, K. (2001) PORC of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol. Biol. 47, 805813.
  • Sundqvist, C. and Dahlin, C. (1997) With chlorophyll pigments from prolamellar bodies to light-harvesting complexes. Physiol. Plant. 100, 748759.
  • Teakle, G.R. and Griffiths, W.T. (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem. J. 296, 225230.
  • Tzvetkova-Chevolleau, T., Hutin, C., Noel, L.D. et al. (2007) Canonical signal recognition particle components can be bypassed for posttranslational protein targeting in chloroplasts. Plant Cell, 19, 16351648.
  • Virgin, H.I., Kahn, A. and Wettsteino, D.V. (1963) Physiology of chlorophyll formation in relation to structural changes in chloroplasts. Photochem. Photobiol. 2, 8391.
  • Yoshida, K., Chen, R.M., Tanaka, A., Teramoto, H., Tanaka, R., Timko, M.P. and Tsuji, H. (1995) Correlated changes in the activity, amount of protein, and abundance of transcript of NADPH:protochlorophyllide oxidoreductase and chlorophyll accumulation during greening of cucumber cotyledons. Plant Physiol. 109, 231238.
  • Yuan, M., Zhang, D.W., Zhang, Z.W., Chen, Y.E., Yuan, S., Guo, Y.R. and Lin, H.H. (2012) Assembly of NADPH:protochlorophyllide oxidoreductase complex is needed for effective greening of barley seedlings. J. Plant Physiol. 169, 13111316.
  • Zavaleta-Mancera, H.A., Franklin, K.A., Ougham, H.J., Thomas, H. and Scott, I.M. (1999) Regreening of senescent Nicotiana leaves I. Reappearance of NADPH-protochlorophylllide oxidoreductase and light harvesting chlorophyll a/b-binding protein. J. Exp. Bot. 50, 16771682.