SEARCH

SEARCH BY CITATION

References

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105121.
  • Ballerini, E.S. and Kramer, E.M. (2011) Environmental and molecular analysis of the floral transition in the lower eudicot Aquilegia formosa. EvoDevo 2, 4.
  • Barkoulas, M., Hay, A., Kougioumoutzi, E. and Tsiantis, M. (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat. Genet. 40, 11361141.
  • Benlloch, R., d'Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J.P., Cañas, L.A., Kondorosi, A., Madueño, F. and Ratet, P. (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 142, 972983.
  • Bennett, M.J., Marchant, A., May, S.T. and Swarup, R. (1998) Going the distance with auxin: unraveling the molecular basis of auxin transport. Philos. Trans. R. Soc. B, 353, 15111515.
  • Berbel, A., Navarro, C., Ferrandiz, C., Cañas, L.A., Madueño, F. and Beltrán, J. (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25, 441451.
  • Berbel, A., Ferrandiz, C., Hecht, V. et al. (2012) VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat. Commun. 3, 797.
  • Bharathan, G., Goliber, T., Moore, C., Kessler, S., Pham, T. and Sinha, N. (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science, 296, 18581860.
  • Blázquez, M., Ferrandiz, C., Madueño, F. and Parcy, F. (2006) How floral meristems are built. Plant Mol. Biol. 60, 855870.
  • Blein, T., Pulido, A., Vialette-Guiraud, A., Nikovics, K., Morin, H., Hay, A., Johansen, I.E., Tsiantis, M. and Laufs, P. (2008) A conserved molecular framework for compound leaf development. Science, 322, 18351838.
  • Bowman, J., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119, 721743.
  • Champagne, C. and Sinha, N. (2004) Compound leaves: equal to the sum of their parts? Development, 131, 44014412.
  • Champagne, C.E.M., Goliber, T.E., Wojciechowski, M.F., Mei, R.W., Townsley, B.T., Wang, K., Paz, M.M., Geeta, R. and Sinha, N.R. (2007) Compound leaf development and evolution in the legumes. Plant Cell, 19, 33693378.
  • Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y., An, G. and Jang, S.K. (1999) Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40, 419429.
  • Ciannamea, S., Kaufmann, K., Frau, M., Nougalli-Tonaco, I.A., Petersen, K., Nielsen, K.K., Angenent, G.C. and Immink, R.G.H. (2006) Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. J. Exp. Bot. 57, 34193431.
  • Danilevskaya, O.N., Meng, X., Selinger, D.A., Deschamps, S., Hermon, P., Vansant, G., Gupta, R., Ananiev, E.V. and Muszynski, M.G. (2008) Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol. 147, 20542069.
  • DeFolter, S., Immink, R.G.H., Kieffer, M. et al. (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 17, 14241433.
  • Efroni, I., Eshed, Y. and Lifschitz, E. (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell, 22, 10191032.
  • Ferrandiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127, 725734.
  • Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L. and Kater, M.M. (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS-box genes. Plant Physiol. 135, 22072219.
  • Gould, B. and Kramer, E.M. (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods, 3, 6.
  • Gourlay, C.W., Hofer, J.M.I. and Ellis, T.H.N. (2000) Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA and TENDRIL-LESS. Plant Cell, 12, 12791294.
  • Gregis, V., Sessa, A., Colombo, L. and Kater, M.M. (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell, 18, 13731382.
  • Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125, 15091517.
  • Hardenack, S., Ye, D., Saedler, H. and Grant, S. (1994) Comparison of MADS box genes expression in developing male and female flowers of the dioecious plant white campion. Plant Cell, 6, 17751787.
  • Hay, A. and Tsiantis, M. (2010) KNOX genes: versatile regulators of plant development and diversity. Development, 137, 31533165.
  • Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A. and Ellis, N. (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7, 581587.
  • Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525529.
  • Huijser, P., Klein, J., Lonnig, W.-E., Meijer, H., Saedler, H. and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 12391249.
  • Immink, R.G.H., Hannapel, D.J., Ferrario, S., Busscher, M., Franken, J., Lookeren-Campagne, M.M. and Angenent, G.C. (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development, 126, 51175126.
  • Immink, R.G.H., Ferrario, S., Busscher-Lange, J., Kooiker, M., Busscher, M. and Angenent, G.C. (2003) Analysis of the petunia MADS-box transcription factor family. Mol. Genet. Genomics, 268, 598606.
  • Irish, V.F. and Sussex, I.M. (1990) Function of the apetala-1 gene during Arabídopsis floral development. Plant Cell, 2, 741753.
  • Jaakola, L., Poole, M., Jones, M.O. et al. (2010) A SQUAMOSA MADS box gene is involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol. 153, 16191629.
  • Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P. and Tisantis, M. (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of citokining and gibberellin activities. Curr. Biol. 15, 15601565.
  • Kaufmann, K., Wellmer, F., Muiño, J.M. et al. (2010) Orchestration of floral initiation by APETALA1. Science, 328, 8589.
  • Kim, S., Koh, J., Yoo, M., Kong, H., Hu, Y., Ma, H., Soltis, P.S. and Soltis, D.E. (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J. 43, 724744.
  • Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y. and Kyozuka, J. (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS-box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell, 24, 18481859.
  • Kramer, E.M. (2009) Aquilegia – a new model for plant development, ecology and evolution. Annu. Rev. Plant Biol. 60, 261277.
  • Kramer, E.M., Holappa, L., Gould, B., Jaramillo, M.A., Setnikov, D. and Santiago, P. (2007) Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell, 19, 750766.
  • Leseberg, C.H., Eissler, C.L., Wang, X., Johns, M.A., Duvall, M.R. and Mao, L. (2008) Interaction study of MADS-box proteins in tomato. J. Exp. Bot. 59, 22532265.
  • Litt, A. and Irish, V.F. (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics, 165, 821833.
  • Liu, Y., Schiff, M. and Dinesh-Kumar, S.P. (2002) Virus-induced gene silencing in tomato. Plant J. 31, 777786.
  • Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 52, 402408.
  • Mandel, M.A. and Yanofsky, M.F. (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell, 7, 17631771.
  • Mattsson, J., Sung, Z.R. and Berleth, T. (1999) Responses of plant vascular systems to auxin transport inhibition. Development, 126, 29792991.
  • Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A. and Beeckman, T. (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat. Genet. 40, 14891492.
  • Müller, B.M., Saedler, H. and Zachgo, S. (2001) The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J. 28, 169179.
  • Murai, K., Miyamae, M., Kato, H., Takumi, S. and Ogihara, Y. (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol. 44, 12551265.
  • Pabón-Mora, N., Ambrose, B. and Litt, A. (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 158, 16851704.
  • Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L. and Yanofsky, M.F. (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 24, 385394.
  • Preston, J.C. and Kellogg, E.A. (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics, 174, 421437.
  • Preston, J.C. and Kellogg, E.A. (2007) Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J. 52, 6981.
  • Preston, J.C. and Kellogg, E.A. (2008) Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiol. 146, 265276.
  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl Acad. Sci. USA, 93, 47934798.
  • Ronse de Craene, L.P. (2010) Floral Diagrams: An Aid to Understanding Flower Morphology and Evolution. Cambridge, UK: Cambridge University Press.
  • Ross, J.J., Murfet, J.C. and Reid, J.B. (1997) Gibberellin mutants. Physiol. Plant. 100, 550560.
  • Sakamoto, T., Koutarou, M., Itoh, H. et al. (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134, 16421653.
  • Sather, D.N. and Golenberg, E.M. (2009) Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid aminoacid and regulatory evolution. Planta, 229, 507521.
  • Shan, H., Zhang, N., Liu, C., Xu, G., Zhang, J., Chen, Z. and Kong, H. (2007) Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol. Phylogenet. Evol. 44, 2641.
  • Sharma, B., Guo, C., Kong, H. and Kramer, E.M. (2011) Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytol. 191, 870883.
  • Shchennikova, A.V., Shulga, O.A., Immink, R.G.H., Skryabin, K.G. and Angenent, G.C. (2004) Identification and characterization of four Chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 134, 16321641.
  • Smaczniak, C., Immink, R.G.H., Muiño, J.M. et al. (2011) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA, 109, 15601565.
  • Theissen, G. and Saedler, H. (2001) Floral quartets. Nature, 409, 469471.
  • Torti, S., Fornara, F., Vincent, C., Andrés, F., Nordström, K., Göbel, U., Knoll, D., Schoof, H. and Coupland, G. (2012) Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell, 24, 444462.
  • Trevaskis, B., Bagnall, D.J., Ellis, M.H., Peacock, W.J. and Dennis, E.S. (2003) MADS-box genes control vernalization-induced flowering in cereals. Proc. Natl Acad. Sci. USA, 100, 1309913104.
  • Trevaskis, B., Hemming, M.N., Dennis, E.S. and Peacock, W.J. (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 12, 352357.
  • Tsiantis, M., Brown, M.I.N., Skibinski, G. and Langdale, J.A. (1999) Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol. 121, 11631168.
  • Tucker, S.C. and Hodges, S.A. (2005) Floral ontogeny of Aquilegia, Semiaquilegia and Enemion (Ranunculaceae). Int. J. Plant Sci. 166, 557574.
  • Voelckel, C., Borevitz, J.O., Kramer, E.M. and Hodges, S.A. (2010) Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis. PLoS ONE, 5, 112.
  • Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W. and Giovannoni, J. (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 296, 343346.
  • Yalovsky, S., Rodríguez-Concepción, M., Bracha, K., Toledo-Ortiz, G. and Gruissem, W. (2000) Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell, 12, 12571266.
  • Yanai, O., Shani, E., Russ, D. and Ori, N. (2011) Gibberellin partly mediates LANCEOLATE activity in tomato. Plant J. 68, 571582.
  • Yu, H., Ito, T., Wellmer, F. and Meyerowitz, E.M. (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat. Genet. 36, 157161.