SEARCH

SEARCH BY CITATION

References

  • Alonso-Blanco, C., Aarts, M.G., Bentsink, L., Keurentjes, J.J., Reymond, M., Vreugdenhil, D. and Koornneef, M. (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell, 21, 18771896.
  • Amasino, R. (2010) Seasonal and developmental timing of flowering. Plant J. 61, 10011013.
  • Arvidsson, S., Perez-Rodriguez, P. and Mueller-Roeber, B. (2011) A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol. 191, 895907.
  • Backhaus, A., Kuwabara, A., Bauch, M., Monk, N., Sanguinetti, G. and Fleming, A. (2010) LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytol. 187, 251261.
  • Baerenfaller, K., Massonnet, C., Walsh, S. et al. (2012) Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol. Syst. Biol. 8, 606.
  • Baxter, I., Brazelton, J.N., Yu, D. et al. (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet. 6, e1001193.
  • Bergelson, J. and Roux, F. (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat. Rev. Genet. 11, 867879.
  • Bouchabke, O., Chang, F., Simon, M., Voisin, R., Pelletier, G. and Durand-Tardif, M. (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS ONE, 3, e1705.
  • Brachi, B., Morris, G.P. and Borevitz, J.O. (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 12, 232.
  • Bylesjo, M., Segura, V., Soolanayakanahally, R.Y., Rae, A.M., Trygg, J., Gustafsson, P., Jansson, S. and Street, N.R. (2008) LAMINA: a tool for rapid quantification of leaf size and shape parameters. BMC Plant Biol. 8, 82.
  • Cao, J., Schneeberger, K., Ossowski, S. et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43, 956963.
  • Clark, R.T., Famoso, A.N., Zhao, K., Shaff, J.E., Craft, E.J., Bustamante, C.D., McCouch, S.R., Aneshansley, D.J. and Kochian, L.V. (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant, Cell Environ. 36, 454466.
  • De Vylder, J., Vandenbussche, F., Hu, Y., Philips, W. and Van Der Straeten, D. (2012) Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiol. 160, 11491159.
  • Elwell, A.L., Gronwall, D.S., Miller, N.D., Spalding, E.P. and Durham Brooks, T.L. (2011) Separating parental environment from seed size effects on next generation growth and development in Arabidopsis. Plant, Cell Environ. 34, 291301.
  • Granier, C., Aguirrezabal, L., Chenu, K. et al. (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169, 623635.
  • Guerche, P., Bouchez, D., Balasse, H. and Camilleri, C.. (2010) French Patent: Automaton for Plant Phenotyping. Patent number PCT/FR2010/050460, March 2010.
  • Iyer-Pascuzzi, A.S., Symonova, O., Mileyko, Y., Hao, Y., Belcher, H., Harer, J., Weitz, J.S. and Benfey, P.N. (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol. 152, 11481157.
  • Keurentjes, J.J., Bentsink, L., Alonso-Blanco, C., Hanhart, C.J., Blankestijn-De Vries, H., Effgen, S., Vreugdenhil, D. and Koornneef, M. (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics, 175, 891905.
  • Koumproglou, R., Wilkes, T.M., Townson, P., Wang, X.Y., Beynon, J., Pooni, H.S., Newbury, H.J. and Kearsey, M.J. (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J. 31, 355364.
  • Kroymann, J. and Mitchell-Olds, T. (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature, 435, 9598.
  • Leister, D., Varotto, C., Pesaresi, P., Niwergall, A. and Salamini, F. (1999) Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiol. Biochem. 37, 671678.
  • Loudet, O., Chaillou, S., Merigout, P., Talbotec, J. and Daniel-Vedele, F. (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol. 131, 345358.
  • Loudet, O., Gaudon, V., Trubuil, A. and Daniel-Vedele, F. (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor. Appl. Genet. 110, 742753.
  • Loudet, O., Michael, T.P., Burger, B.T., Le Mette, C., Mockler, T.C., Weigel, D. and Chory, J. (2008) A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 105, 1719317198.
  • Massonnet, C., Vile, D., Fabre, J. et al. (2010) Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories. Plant Physiol. 152, 21422157.
  • Poormohammad Kiani, S., Trontin, C., Andreatta, M., Simon, M., Robert, T., Salt, D.E. and Loudet, O. (2012) Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient. PLoS Genet. 8, e1002814.
  • Rockman, M.V. (2012) The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution, 66, 117.
  • Simon, M., Loudet, O., Durand, S., Bérard, A., Brunel, D., Sennesal, F.–.X., Durand-Tardif, M., Pelletier, G. and Camilleri, C. (2008) QTL mapping in five new large RIL populations of Arabidopsis thaliana genotyped with consensus SNP markers. Genetics, 178, 22532264.
  • Skirycz, A., Vandenbroucke, K., Clauw, P. et al. (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat. Biotechnol. 29, 212214.
  • Tisné, S., Schmalenbach, I., Reymond, M., Dauzat, M., Pervent, M., Vile, D. and Granier, C. (2010) Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population. Plant, Cell Environ. 33, 18751887.
  • Trontin, C., Tisné, S., Bach, L. and Loudet, O. (2011) What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? Curr. Opin. Plant Biol. 14, 225231.
  • Walter, A., Scharr, H., Gilmer, F. et al. (2007) Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol. 174, 447455.
  • Zhang, X., Hause, R.J. Jr and Borevitz, J.O. (2012) Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3 (Bethesda), 2, 2934.