SEARCH

SEARCH BY CITATION

References

  • Anders, N., Wilkinson, M.D., Lovegrove, A. et al. (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc. Natl Acad. Sci., 109, 989993.
  • Atkins, E.D.T. (1992) Three-Dimensional structure, interactions and properties of xylans. In Xylans and Xylanases: Progress in Biotechnology (Visser, J., Beldman, G., Kusters, V.S. and Voragen, A.G.J., eds). Amsterdam: Elsevier Science Publishers, pp. 3950.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248254.
  • Brown, D.M., Zeef, L.A.H., Ellis, J., Goodacre, R. and Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell, 17, 22812295.
  • Brown, D.M., Goubet, F., Wong, V.W., Goodacre, R., Stephens, E., Dupree, P. and Turner, S.R. (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J., 52, 11541168.
  • Brown, D.M., Zhang, Z.N., Stephens, E., Dupree, P. and Turner, S.R. (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J., 57, 732746.
  • Brown, D.M., Wightman, R., Zhang, Z., Gomez, L.D., Atanassov, I., Bukowski, J.-P., Tryfona, T., McQueen-Mason, S.J., Dupree, P. and Turner, S. (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J., 66, 401413.
  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res., 37, D233D238.
  • Chiniquy, D., Sharma, V., Schultink, A. et al. (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc. Natl Acad. Sci. 109, 1711717122.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, 735743.
  • Cosgrove, D.J. and Jarvis, M.C. (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci., 3, 204.
  • Donaldson, L.A. and Knox, J.P. (2012) Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation. Plant Physiol. 158, 642653.
  • Ebringerová, A. and Heinze, T. (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun., 21, 542556.
  • Fincher, G.B. (2009) Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol., 149, 2737.
  • Fry, S.C. (1986) Cross-linking of matric polymers in the growing cell-walls of angiosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 37, 165186.
  • Gabbay, S.M., Sundararajan, P.R. and Marchessault, R.H. (1972) X-Ray and stereochemical studies on xylan diacetate. Biopolymers, 11, 7994.
  • Goubet, F., Jackson, P., Deery, M. and Dupree, P. (2002) Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE): a method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem., 300, 5368.
  • Gruppen, H., Kormelink, F.J.M. and Voragen, A.G.J. (1993) Water-unextractable cell-wall material from wheat-flour. 3. A structural model for arabinoxylans. J. Cereal Sci., 18, 111128.
  • Jacobs, A., Larsson, P.T. and Dahlman, O. (2001) Distribution of uronic acids in xylans from various species of soft- and hardwood as determined by MALDI mass spectrometry. Biomacromolecules, 2, 979990.
  • Jensen, J.K., Kim, H., Cocuron, J.-C., Orler, R., Ralph, J. and Wilkerson, C.G. (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J., 66, 387400.
  • Kabel, M.A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajó, J.C., Gírio, F.M., Schols, H. and Voragen, A.G.J. (2002) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr. Polym., 50, 4756.
  • Kabel, M.A., van den Borne, H., Vincken, J.P., Voragen, A.G.J. and Schols, H.A. (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr. Polym., 69, 94105.
  • Kim, J.S. and Daniel, G. (2012) Immunolocalization of hemicelluloses in Arabidopsis thaliana stem. Part I: temporal and spatial distribution of xylans. Planta, 236, 12751288.
  • Kozlova, L.V., Mikshina, P.V. and Gorshkova, T.A. (2012) Glucuronoarabinoxylan extracted by treatment with endoxylanase from different zones of growing maize root. Biochemistry (Mosc). 77, 395403.
  • Linder, Ã.S., Bergman, R., Bodin, A. and Gatenholm, P. (2003) Mechanism of Assembly of Xylan onto Cellulose Surfaces. Langmuir, 19, 50725077.
  • Maslen, S.L., Goubet, F., Adam, A., Dupree, P. and Stephens, E. (2007) Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS. Carbohydr. Res., 342, 724735.
  • Mora, F., Ruel, K., Comtat, J. and Joseleau, J.-P. (1986) Aspect of native and redeposited xylans at the surface of cellulose microfibrils. Holzforschung, 40, 8591.
  • Mortimer, J.C., Miles, G.P., Brown, D.M. et al. (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc. Natl Acad. Sci. USA, 107, 1740917414.
  • Murphy, A.M., Otto, B., Brearley, C.A., Carr, J.P. and Hanke, D.E. (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J., 56, 638652.
  • Nieduszynski, I.A. and Marchessault, R.H. (1972) Structure of β,d(1[RIGHTWARDS ARROW]4′)-xylan hydrate. Biopolymers, 11, 13351344.
  • Nishitani, K. and Nevins, D.J. (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J. Biol. Chem., 266, 65396543.
  • Oikawa, A., Joshi, H.J., Rennie, E.A., Ebert, B., Manisseri, C., Heazlewood, J.L. and Scheller, H.V. (2010) An integrative approach to the identification of Arabidopsis and rice genes involved in xylan and secondary wall development. PLoS ONE, 5, e15481.
  • Pauly, M. and Keegstra, K. (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J., 54, 559568.
  • Pena, M.J., Zhong, R.Q., Zhou, G.K., Richardson, E.A., O'Neill, M.A., Darvill, A.G., York, W.S. and Ye, Z.H. (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell, 19, 549563.
  • Preston, R.D. (1979) Polysaccharide conformation and cell wall function. Ann. Rev. Plant Physiol. 30, 5578.
  • Ranocha, P., Denancé, N., Vanholme, R. et al. (2010) Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. Plant J., 63, 469483.
  • Reis, D. and Vian, B. (2004) Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. C. R. Biol. 327, 785790.
  • Rennie, E.A., Hansen, S.F., Baidoo, E.E., Hadi, M.Z., Keasling, J.D. and Scheller, H.V. (2012) Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiol. 159, 14081417.
  • Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annu. Rev. Plant Biol., 61, 263289.
  • St. John, F.J., Rice, J.D. and Preston, J.F. (2006) Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J. Bacteriol., 188, 86178626.
  • St. John, F.J., Hurlbert, J.C., Rice, J.D., Preston, J.F. and Pozharski, E. (2011) Ligand bound structures of a glycosyl hydrolase family thirty glucuronoxylan xylanohydrolase. J. Mol. Biol., 407, 92109.
  • Subramaniyan, S. and Prema, P. (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol., 22, 3364.
  • Szabo, L., Jamal, S., Xie, H.F., Charnock, S.J., Bolam, D.N., Gilbert, H.J. and Davies, G.J. (2001) Structure of a family 15 carbohydrate-binding module in complex with xylopentaose – evidence that xylan binds in an approximate 3-fold helical conformation. J. Biol. Chem., 276, 4906149065.
  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 46734680.
  • Tryfona, T. and Stephens, E. (2010) Analysis of carbohydrates on proteins by offline normal-phase liquid chromatography MALDI-TOF/TOF-MS/MS. Methods Mol. Biol., 658, 137151.
  • Tryfona, T., Liang, H.C., Kotake, T. et al. (2010) Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydr. Res. 345, 26482656.
  • Vardakou, M., Dumon, C., Murray, J.W., Christakopoulos, P., Weiner, D.P., Juge, N., Lewis, R.J., Gilbert, H.J. and Flint, J.E. (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J. Mol. Biol., 375, 12931305.
  • Vršanská, M., Kolenová, K., Puchart, V. and Biely, P. (2007) Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J., 274, 16661677.
  • Wu, A.M., Rihouey, C., Seveno, M., Hörnblad, E., Singh, S.K., Matsunaga, T., Ishii, T., Lerouge, P. and Marchant, A. (2009) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J. 57, 718731.
  • Wu, A.M., Hörnblad, E., Voxeur, A., Gerber, L., Rihouey, C., Lerouge, P. and Marchant, A. (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol. 153, 542554.
  • Yin, Y.B., Chen, H.L., Hahn, M.G., Mohnen, D. and Xu, Y. (2010) Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol., 153, 17291746.
  • Yin, Y.B., Mohnen, D., Gelineo-Albersheim, I., Xu, Y. and Hahn, M.G. (2011) Glycosyltransferases of the GT8 family. In Annual Plant Reviews. Plant Polysaccharides, Biosynthesis and Bioengineering, Vol. 41. Hoboken, NJ: Wiley-Blackwell, pp. 167211.
  • Yui, T., Imada, K., Shibuya, N. and Ogawa, K. (1995) Conformation of an arabinoxylan isolated from the rice endosperm cell-wall by X-ray-diffraction and a conformational-analysis. Biosci. Biotechnol. Biochem., 59, 965968.