SEARCH

SEARCH BY CITATION

References

  • Barsch, A., Carvalho, H.G., Cullimore, J.V. and Niehaus, K. (2006a) GC–MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J. Biotechnol. 127, 7983.
  • Barsch, A., Tellström, V., Patschkowski, T., Küster, H. and Niehaus, K. (2006b) Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol. Plant–Microbe Interact. 19, 9981013.
  • Becana, M. and Klucas, R.V. (1992) Oxidation and reduction of leghemoglobin in root nodules of leguminous plants. Plant Physiol. 98, 12171221.
  • Benedito, V.A., Torres-Jerez, I., Murray, J.D. et al. (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J. 55, 504513.
  • Benloch, R., Navarro, C., Beltran, J.P. and Canas, L.A. (2003) Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex. Plant Reprod. 15, 231241.
  • Bergersen, F.J., Kennedy, C. and Hill, S. (1982) Influence of low oxygen concentration on derepression of nitrogenase in Klebsiella pneumoniae. J. Gen. Microbiol. 128, 909915.
  • Borowiec, A., Lechward, K., Tkacz-Stachowska, K. and Skladanowski, A.C. (2006) Adenosine as a metabolic regulator of tissue function: production of adenosine by cytoplasmic 5’–nucleotidases. Acta Biochim. Pol. 53, 269278.
  • Branca, A., Paape, T.D., Zhou, P. et al. (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc. Natl Acad. Sci. USA, 108, E864E870.
  • Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M.J., Sumner, L.W. and Stacey, G. (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol. 153, 18081822.
  • Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P., Dixon, R.A. and Sumner, L.W. (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56, 323336.
  • Catoira, R., Galera, C., de Billy, F., Penmetsa, R.V., Journet, E.P., Maillet, F., Rosenberg, C., Cook, D., Gough, C. and Denarie, J. (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell, 12, 16471666.
  • Cha, S.W., Zhang, H., Ilarslan, H.I., Wurtele, E.S., Brachova, L., Nikolau, B.J. and Yeung, E.S. (2008) Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J. 55, 348360.
  • Colebatch, G., Desbrosses, G., Ott, T., Krusell, L., Montanari, O., Kloska, S., Kopka, J. and Udvardi, M.K. (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J. 39, 487512.
  • Desbrosses, G.G., Kopka, J. and Udvardi, M.K. (2005) Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant–microbe interactions. Plant Physiol. 137, 13021318.
  • D'Haeze, W. and Holsters, M. (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology, 12, 79R105R.
  • Edwards, E.L., Rodrigues, J.A., Ferreira, J., Goodall, D.M., Rauter, A.P., Justino, J. and Thomas-Oates, J. (2006) Capillary electrophoresis-mass spectrometry characterisation of secondary metabolites from the antihyperglycaemic plant Genista tenera. Electrophoresis, 27, 21642170.
  • Farag, M.A., Huhman, D.V., Lei, Z.T. and Sumner, L.W. (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry, 68, 342354.
  • Farag, M.A., Huhman, D.V., Dixon, R.A. and Sumner, L.W. (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 146, 387402.
  • Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R.D. and Burstin, J. (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133, 664682.
  • Garrocho-Villegas, V., Gopalasubramaniam, S.K. and Arredondo-Peter, R. (2007) Plant hemoglobins: what we know six decades after their discovery. Gene, 398, 7885.
  • Gilles-Gonzalez, M.A., Ditta, G.S. and Helinski, D.R. (1991) A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature, 350, 170172.
  • Gloux, K. and Lerudulier, D. (1989) Transport and catabolism of proline betaine in salt-stressed Rhizobium meliloti. Arch. Microbiol. 151, 143148.
  • Goldmann, A., Boivin, C., Fleury, V., Message, B., Lecoeur, L., Maille, M. and Tepfer, D. (1991) Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol. Plant–Microbe Interact. 4, 571578.
  • Gordon, A.J., Thomas, B.J. and James, C.L. (1995) The location of sucrose synthase in root nodules of white clover. New Phytol. 130, 523530.
  • Graham, P.H. and Vance, C.P. (2003) Legumes: importance and constraints to greater use. Plant Physiol. 131, 872877.
  • Grimsrud, P.A., den Os, D., Wenger, C.D., Swaney, D.L., Schwartz, D., Sussman, M.R., Ané, J.M. and Coon, J.J. (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol. 152, 1928.
  • Harada, K. and Fukusaki, E. (2009) Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. Plant Biotechnol. 26, 4752.
  • Hartwig, U.A., Maxwell, C.A., Joseph, C.M. and Phillips, D.A. (1990a) Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172, 27692773.
  • Hartwig, U.A., Maxwell, C.A., Joseph, C.M. and Phillips, D.A. (1990b) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol. 92, 116122.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463499.
  • Hölscher, D., Shroff, R., Knop, K., Gottschaldt, M., Crecelius, A., Schneider, B., Heckel, D.G., Schubert, U.S. and Svatoš, A. (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J. 60, 907918.
  • Jones, D.L. (1998) Organic acids in the rhizosphere – a critical review. Plant Soil, 205, 2544.
  • Jun, J.H., Song, Z., Liu, Z., Nikolau, B.J., Yeung, E.S. and Lee, Y.J. (2010) High-spatial and high-mass resolution imaging of surface metabolites of Arabidopsis thaliana by laser desorption-ionization mass spectrometry using colloidal silver. Anal. Chem. 82, 32553265.
  • Kahn, M.L., Kraus, J. and Somerville, J.E. (1985) A model of nutrient exchange in the Rhizobium–legume symbiosis. In Nitrogen Fixation Research Progress (Evans, H.J., Bottomley, P.J. and Newton, W.E., eds). Dordrecht, The Netherlands: Martinus Nijhoff, pp. 193199.
  • Kaspar, S., Peukert, M., Svatoš, A., Matros, A. and Mock, H.P. (2011) MALDI-imaging mass spectrometry – an emerging technique in plant biology. Proteomics, 11, 18401850.
  • Kessmann, H., Edwards, R., Geno, P.W. and Dixon, R.A. (1990) Stress responses in alfalfa (Medicago sativa L.): V Constitutive and elicitor-induced accumulation of isoflavonoid conjugates in cell suspension cultures. Plant Physiol. 94, 227232.
  • Kueger, S., Steinhauser, D., Willmitzer, L. and Giavalisco, P. (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 70, 3950.
  • Lee, S., Valentine, S.J., Reilly, J.P. and Clemmer, D.E. (2012a) Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161167.
  • Lee, Y.J., Perdian, D.C., Song, Z.H., Yeung, E.S. and Nikolau, B.J. (2012b) Use of mass spectrometry for imaging metabolites in plants. Plant J. 70, 8195.
  • Li, Y., Shrestha, B. and Vertes, A. (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal. Chem. 79, 523532.
  • Li, Y., Shrestha, B. and Vertes, A. (2008) Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal. Chem. 80, 407420.
  • Lodwig, E.M., Hosie, A.H.F., Bourdès, A., Findlay, K., Allaway, D., Karunakaran, R., Downie, J.A. and Poole, P.S. (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature, 422, 722726.
  • Lois, A.F., Ditta, G.S. and Helinski, D.R. (1993) The oxygen sensor FixL of Rhizobium meliloti is a membrane protein containing four possible transmembrane segments. J. Bacteriol. 175, 11031109.
  • Masson-Boivin, C., Giraud, E., Perret, X. and Batut, J. (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 17, 458466.
  • Maxwell, C.A., Hartwig, U.A., Joseph, C.M. and Phillips, D.A. (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol. 91, 842847.
  • Mitra, R.M. and Long, S.R. (2004) Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Plant Physiol. 134, 595604.
  • Nemes, P. and Vertes, A. (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 80988106.
  • Northen, T.R., Yanes, O., Northen, M.T., Marrinucci, D., Uritboonthai, W., Apon, J., Golledge, S.L., Nordström, A. and Siuzdak, G. (2007) Clathrate nanostructures for mass spectrometry. Nature, 449, 10331036.
  • Ott, T., Sullivan, J., James, E.K., Flemetakis, E., Gunther, C., Gibon, Y., Ronson, C. and Udvardi, M. (2009) Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. Mol. Plant–Microbe Interact. 22, 800808.
  • Pachuta, S.J. and Cooks, R.G. (1987) Mechanisms in molecular SIMS. Chem. Rev. 87, 647669.
  • Penmetsa, R.V. and Cook, D.R. (2000) Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol. 123, 13871397.
  • Peters, N.K., Frost, J.W. and Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science, 233, 977980.
  • Phillips, D.A., Joseph, C.M. and Maxwell, C.A. (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol. 99, 15261531.
  • Reyrat, J.M., David, M., Blonski, C., Boistard, P. and Batut, J. (1993) Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and fixK genes. J. Bacteriol. 175, 68676872.
  • Rose, C.M., Venkateshwaran, M., Grimsrud, P.A., Westphall, M.S., Sussman, M.R., Coon, J.J. and Ané, J.M. (2012) Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data. Front. Plant Sci. 3, 122.
  • Samac, D.A., Peñuela, S., Schnurr, J.A., Hunt, E.N., Foster-Hartnett, D., Vandenbosch, K.A. and Gantt, J.S. (2011) Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol. Plant Pathol. 12, 786798.
  • Santana, M.A., Pihakaski-Maunsbach, K., Sandal, N., Marcker, K.A. and Smith, A.G. (1998) Evidence that the plant host synthesizes the heme moiety of leghemoglobin in root nodules. Plant Physiol. 116, 12591269.
  • Shimma, S. and Seto, M. (2007) Mass microscopy to reveal distinct localization of Heme B (m/z 616) in colon cancer liver metastasis. J. Mass Spectrom. Soc. Jpn, 55, 145148.
  • Shroff, R. and Svatoš, A. (2009) Proton sponge: a novel and versatile MALDI matrix for the analysis of metabolites using mass spectrometry. Anal. Chem. 81, 79547959.
  • Shroff, R., Rulisek, L., Doubsky, J. and Svatoš, A. (2009) Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc. Natl Acad. Sci. USA, 106, 1009210096.
  • Starker, C.G., Parra-Colmenares, A.L., Smith, L., Mitra, R.M. and Long, S.R. (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol. 140, 671680.
  • Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W.R. and Krapp, A. (2002) Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53, 959970.
  • Stoeckli, M., Chaurand, P., Hallahan, D.E. and Caprioli, R.M. (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7, 493496.
  • Subramanian, S., Stacey, G. and Yu, O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 48, 261273.
  • Subramanian, S., Stacey, G. and Yu, O. (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12, 282285.
  • Sulieman, S. (2011) Does GABA increase the efficiency of symbiotic N2 fixation in legumes? Plant Signal Behav. 6, 3236.
  • Sulieman, S. and Schulze, J. (2010) Phloem-derived γ–aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula. Plant, Cell Environ. 33, 21622172.
  • Suzuki, H., Reddy, M.S., Naoumkina, M., Aziz, N., May, G.D., Huhman, D.V., Sumner, L.W., Blount, J.W., Mendes, P. and Dixon, R.A. (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220, 696707.
  • Takáts, Z., Wiseman, J.M. and Cooks, R.G. (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40, 12611275.
  • Trinchant, J.C., Boscari, A., Spermato, G., Van de Sype, G. and Le Rudulier, D. (2004) Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol. 135, 15831594.
  • Turner, G.L. and Gibson, A.H. (1980) Measurement of nitrogen fixation by indirect means. In Methods for Evaluating Biological Nitrogen Fixation (Bergersen, F.J., ed.). Chichester, UK: John Wiley & Sons, pp. 111138.
  • Udvardi, M.K. and Day, D.A. (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 493523.
  • Vaclavik, L., Cajka, T., Hrbek, V. and Hajslova, J. (2009) Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal. Chim. Acta, 645, 5663.
  • Vasse, J., de Billy, F., Camut, S. and Truchet, G. (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 172, 42954306.
  • Venkateshwaran, M. and Ané, J.M. (2011) Legumes and nitrogen fixation: physiological, molecular, evolutionary perspective and applications. In The Molecular Basis of Nutrient Use Efficiency in Crops (Hawkesford, M. and Barraclough, P., eds). Oxford, UK: John Wiley & Sons, pp. 443489.
  • Wang, H.L., Chen, J.H., Wen, J.Q., Tadege, M., Li, G.M., Liu, Y., Mysore, K.S., Ratet, P. and Chen, R.J. (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol. 146, 17591772.
  • Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T. and Long, S. (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science, 327, 11261129.
  • Wasson, A.P., Pellerone, F.I. and Mathesius, U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell, 18, 16171629.
  • Wiseman, J.M., Ifa, D.R., Song, Q.Y. and Cooks, R.G. (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. Engl. 45, 71887192.
  • Woo, H.K., Northen, T.R., Yanes, O. and Siuzdak, G. (2008) Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat. Protoc. 3, 13411349.
  • Zahran, H.H. (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968989.
  • Zhang, N., Venkateshwaran, M., Boersma, M., Harms, A., Howes-Podoll, M., den Os, D., Ané, J.M. and Sussman, M.R. (2012) Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume–rhizobia symbiosis. FEBS Lett. 586, 31503158.