SEARCH

SEARCH BY CITATION

References

  • Agarwal, M., Hao, Y.J., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X.W. and Zhu, J.K. (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281, 3763637645.
  • Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653657.
  • An, C.F. and Mou, Z.L. (2011) Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53, 412428.
  • Blanco, F., Salinas, P., Cecchini, N.M., Jordana, X., Van Hummelen, P., Alvarez, M.E. and Holuigue, L. (2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol. Biol. 70, 79102.
  • Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L.B., He, P., Bush, J., Cheng, S.H. and Sheen, J. (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 464, 418422.
  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 10431054.
  • Cook, D., Fowler, S., Fiehn, O. and Thomashow, M.F. (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl Acad. Sci. USA, 101, 1524315248.
  • Dempsey, D.A., Vlot, A.C., Wildermuth, M.C. and Klessig, D.F. (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis Book, 9, e0156.
  • Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C. and Lempicki, R.A. (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, R60.
  • Doherty, C.J., Van Buskirk, H.A., Myers, S.J. and Thomashow, M.F. (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell, 21, 972984.
  • Dong, M.A., Farré, E.M. and Thomashow, M.F. (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C–Repeat Binding Factor (CBF) pathway in Arabidopsis. Proc. Natl Acad. Sci. USA, 108, 72417246.
  • Du, L.Q., Ali, G.S., Simons, K.A., Hou, J.G., Yang, T.B., Reddy, A.S.N. and Poovaiah, B.W. (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature, 457, 11541158.
  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA, 95, 1486314868.
  • Finkler, A., Ashery-Padan, R. and Fromm, H. (2007) CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett. 581, 38933898.
  • Fowler, S. and Thomashow, M.F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 14, 16751690.
  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754756.
  • Galon, Y., Nave, R., Boyce, J.M., Nachmias, D., Knight, M.R. and Fromm, H. (2008) Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 582, 943948.
  • Galon, Y., Aloni, R., Nachmias, D., Snir, O., Feldmesser, E., Scrase-Field, S., Boyce, J.M., Bouche, N., Knight, M.R. and Fromm, H. (2010a) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta, 232, 165178.
  • Galon, Y., Finkler, A. and Fromm, H. (2010b) Calcium-regulated transcription in plants. Mol. Plant, 3, 653669.
  • Gilmour, S.J., Hajela, R.K. and Thomashow, M.F. (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol. 87, 745750.
  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M. and Thomashow, M.F. (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433442.
  • Gilmour, S.J., Fowler, S.G. and Thomashow, M.F. (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol. 54, 767781.
  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280, 104106.
  • Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R. and Guy, C.L. (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J. 50, 967981.
  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287291.
  • Katagiri, F. (2004) A global view of defense gene expression regulation – a highly interconnected signaling network. Curr. Opin. Plant Biol. 7, 506511.
  • Kidokoro, S., Maruyama, K., Nakashima, K. et al. (2009) The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 151, 20462057.
  • Knight, M.R. and Knight, H. (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 195, 737751.
  • Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature, 352, 524526.
  • Knight, H., Trewavas, A.J. and Knight, M.R. (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 8, 489503.
  • Kurkela, S., Franck, M., Heino, P., Lang, V. and Palva, E.T. (1988) Cold induced gene expression in Arabidopsis thaliana L. Plant Cell Rep. 7, 495498.
  • Kuwabara, C. and Imai, R. (2009) Molecular basis of disease resistance acquired through cold acclimation in overwintering plants. J. Plant Biol. 52, 1926.
  • Lee, C.M. and Thomashow, M.F. (2012) Photoperiodic regulation of the C–repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 109, 1505415059.
  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10, 13911406.
  • Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38, 982993.
  • Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J. and Hasegawa, P.M. (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 19, 14031414.
  • Monroy, A.F. and Dhindsa, R.S. (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell, 7, 321331.
  • Moore, J.W., Loake, G.J. and Spoel, S.H. (2011) Transcription dynamics in plant immunity. Plant Cell, 23, 28092820.
  • Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 9981009.
  • Scott, I.M., Clarke, S.M., Wood, J.E. and Mur, L.A.J. (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol. 135, 10401049.
  • Spoel, S.H. and Dong, X.N. (2012) How do plants achieve immunity? Defence without specialized immune cells Nat. Rev. Immunol. 12, 89100.
  • Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J. and Thomashow, M.F. (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 95, 1457014575.
  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C–repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA, 94, 10351040.
  • Thaler, J.S., Humphrey, P.T. and Whiteman, N.K. (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260270.
  • Thomashow, M.F. (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 154, 571577.
  • Todesco, M., Balasubramanian, S., Hu, T.T. et al. (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature, 465, 632636.
  • Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G. and Thomashow, M.F. (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41, 195211.
  • Wang, D., Amornsiripanitch, N. and Dong, X.N. (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2, 10421050.
  • Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F. and Glazebrook, J. (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5, e1000301.
  • Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L.V., Katagiri, F. and Glazebrook, J. (2011) CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 67, 10291041.
  • Wettenhall, J.M. and Smyth, G.K. (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics, 20, 37053706.
  • Wildermuth, M.C., Dewdney, J., Wu, G. and Ausubel, F.M. (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562565.
  • Zhang, Y.X., Xu, S.H., Ding, P.T. et al. (2010) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl Acad. Sci. USA, 107, 1822018225.
  • Zheng, W., Brutus, A., Kremer, J.M., Withers, J.C., Gao, X., Jones, A.D. and He, S.Y. (2011) A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syingae pv. tomato DC300. PLoS Pathog. 7, e1002291.