SEARCH

SEARCH BY CITATION

References

  • Aikawa, S., Kobayashi, M.J., Satake, A., Shimizu, K.K. and Kudoh, H. (2010) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc. Natl Acad. Sci. USA, 107, 1163211637.
  • Alexandre, C.M. and Hennig, L. (2008) FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59, 11271135.
  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • Angel, A., Song, J., Dean, C. and Howard, M. (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature, 476, 105108.
  • Becker, A. and Theissen, G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464489.
  • Bernier, G., Kinet, J.-M. and Sachs, R.M. (1981) The Physiology of Flowering, vol. 1. Boca Raton, FL: CRC Press.
  • Chouard, P. (1960) Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. 11, 191238.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res. 14, 11881190.
  • D'Aloia, M., Tocquin, P. and Périlleux, C. (2008) Vernalization-induced repression of FLOWERING LOCUS C stimulates flowering in Sinapis alba and enhances plant responsiveness to photoperiod. New Phytol. 178, 755765.
  • Demeulemeester, M.A.C. and De Proft, M.P. (1999) In vivo and in vitro flowering response of chicory (Cichorium intybus L.): influence of plant age and vernalization. Plant Cell Rep. 18, 781785.
  • Dennis, E.S. and Peacock, W.J. (2009) Vernalization in cereals. J. Biol. 8, 57.
  • Dielen, V., Notté, C., Lutts, S., Debavelaere, V., Van Herck, J.-C. and Kinet, J.-M. (2005) Bolting control by low temperature in root chicory (Cichorium intybus var. sativum). Field Crops Res. 94, 7685.
  • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783791.
  • Finnegan, E.J. and Dennis, E.S. (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr. Biol. 17, 19781983.
  • Gazzani, S., Gendall, A.R., Lister, C. and Dean, C. (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 132, 11071114.
  • Gendall, A.R., Levy, Y.Y., Wilson, A. and Dean, C. (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 107, 525535.
  • Gianquinto, G. (1997) Morphological and physiological aspects of phase transition in radicchio (Cichorium intybus L. var. silvestre Bisch.): influence of daylength and its interaction with low temperature. Sci. Hortic. 71, 1326.
  • Gianquinto, G. and Pimpini, F. (1995) Morphological and physiological aspects of phase transition in radiccio (Cichorium intybus L. var. sylvestre Bischoff): the influence of temperature. Adv. Hortic. Sci. 9, 192199.
  • Gouy, M., Guindon, S. and Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221224.
  • Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696704.
  • Guo, Y.L., Todesco, M., Hagmann, J., Das, S. and Weigel, D. (2012) Independent FLC mutations as causes of flowering time variation in Arabidopsis thaliana and Capsella rubella. Genetics, 192, 729739.
  • Hajdukiewicz, P., Svab, Z. and Maliga, P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989994.
  • Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W. and Dennis, E.S. (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46, 183192.
  • Ietswaart, R., Wu, Z. and Dean, C. (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet. 28, 445453.
  • Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C. (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 290, 344347.
  • Joseph, C., Billot, J., Soudain, P. and Côme, P. (1985) The effect of cold, anoxia and ethylene on the flowering ability of buds of Cichorium intybus. Physiol. Plant. 65, 146150.
  • Kaufmann, K., Melzer, R. and Theissen, G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183198.
  • Lanave, C., Preparata, G., Saccone, C. and Serio, G. (1984) A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20, 8693.
  • Le, S.Q. and Gascuel, O. (2008) An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 13071320.
  • Lee, I. and Amasino, R.M. (1995) Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 108, 157162.
  • Lin, S.I., Wang, J.G., Poon, S.Y., Su, C.L., Wang, S.S. and Chiou, T.J. (2005) Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol. 137, 10371048.
  • Liu, J., He, Y., Amasino, R. and Chen, X. (2004) siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 28732878.
  • Locascio, A., Lucchin, M. and Varotto, S. (2009) Characterization of a MADS FLOWERING LOCUS C-LIKE (MFL) sequence in Cichorium intybus: a comparative study of CiMFL and AtFLC reveals homologies and divergences in gene function. New Phytol. 182, 630643.
  • Michaels, S.D. and Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949956.
  • Michaels, S.D. and Amasino, R.M. (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 13, 935941.
  • Michaels, S.D., He, Y., Scortecci, K.C. and Amasino, R.M. (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc. Natl Acad. Sci. USA, 100, 1010210107.
  • Napp-Zin, K. (1957) Untersuchungen über das vernalisations-verhalten einer winterannuellen rassen von Arabidopsis thaliana. Planta, 50, 177210.
  • Paulet, P. (1985) Cichorium intybus and C. endivia. In Handbook of Flowering (Halevy, A.H., ed.). Boca Raton, FL: CRC Press, pp. 265271.
  • Pimpini, F. and Gianquinto, G. (1988) The influence of climatic conditions and age of plant at transplanting on bolting and yield of chicory (Cichorium intybus L.) cv. Rosso di Chioggia grown for early production. Acta Hortic. 229, 379386.
  • Pin, P.A., Zhang, W., Vogt, S.H. et al. (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Curr. Biol., 22, 10951101.
  • Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L. and Riechmann, J.L. (2001) Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 126, 122132.
  • Reeves, P.A., He, Y., Schmitz, R.J., Amasino, R.M., Panella, L.W. and Richards, C.M. (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics, 176, 295307.
  • Schranz, M.E., Quijada, P., Sung, S.B., Lukens, L., Amasino, R. and Osborn, T.C. (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics, 162, 14571468.
  • Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A. and Coupland, G. (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898912.
  • Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. and Dennis, E.S. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11, 445458.
  • Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl Acad. Sci. USA, 97, 37533758.
  • Sheldon, C.C., Conn, A.B., Dennis, E.S. and Peacock, W.J. (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell, 14, 25272537.
  • Sievers, F., Wilm, A., Dineen, D. et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.
  • Turck, F., Fornara, F. and Coupland, G. (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573594.
  • Van Cutsem, P., du Jardin, P., Boutte, C., Beauwens, T., Jacqmin, S. and Vekemans, X. (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor. Appl. Genet. 107, 713718.
  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 0034.10034.11.
  • Vergara, G.V. and Ismail, A.M. (2008) Total RNA isolation from dry and germinating rice seeds for gene expression studies. Int. Rice Res. Notes, 32, 3536.
  • Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., Alonso-Blanco, C., Coupland, G. and Albani, M.C. (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature, 459, 423427.
  • Yang, Z. (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10, 13961401.