SEARCH

SEARCH BY CITATION

References

  • Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653657.
  • Andriotis, V.M., Pike, M.J., Bunnewell, S., Hills, M.J. and Smith, A.M. (2010) The plastidial glucose-6-phosphate/phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. Plant J. 64, 128139.
  • Averill, R.H., Bailey-Serres, J. and Kruger, N.J. (1998) Co-operation between cytosolic and plastidic oxidative pentose phosphate pathways revealed by 6-phosphogluconate dehydrogenase-deficient genotypes of maize. Plant J. 14, 449457.
  • Bowsher, C.G., Boulton, E.L., Rose, J., Nayagam, S. and Emes, M.J. (1992) Reductant for glutamate synthase in generated by the oxidative pentose phosphate pathway in non-photosynthetic root plastids. Plant J. 2, 893898.
  • Bowsher, C.G., Lacey, A.E., Hanke, G.T., Clarkson, D.T., Saker, L.R., Stulen, I. and Emes, M.J. (2007) The effect of Glc6P uptake and its subsequent oxidation within pea root plastids on nitrite reduction and glutamate synthesis. J. Exp. Bot., 58, 11091118.
  • Brautigam, A., Gagneul, D. and Weber, A.P. (2007) High-throughput colorimetric method for the parallel assay of glyoxylic acid and ammonium in a single extract. Anal. Biochem., 362, 151153.
  • Cataldo, D.A., Haroon, M., Schrader, L.E. and Youngs, V.L. (1975) Rapid Colorimetric Determination of Nitrate in Plant-Tissue by Nitration of Salicylic-Acid. Commun. Soil Sci. Plant Anal., 6, 7180.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Coruzzi, G.M. (2003) Primary N-assimilation into Amino Acids in Arabidopsis. In The Arabidopsis Book 2: e0010. doi:10.1199/tab.0010.
  • Debnam, P.M., Fernie, A.R., Leisse, A., Golding, A., Bowsher, C.G., Grimshaw, C., Knight, J.S. and Emes, M.J. (2004) Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves. Plant J. 38, 4959.
  • Eicks, M., Maurino, V., Knappe, S., Flugge, U.I. and Fischer, K. (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol., 128, 512522.
  • Esposito, S., Guerriero, G., Vona, V., Di Martino Rigano, V., Carfagna, S. and Rigano, C. (2005) Glutamate synthase activities and protein changes in relation to nitrogen nutrition in barley: the dependence on different plastidic glucose-6P dehydrogenase isoforms. J. Exp. Bot., 56, 5564.
  • Eubel, H., Meyer, E.H., Taylor, N.L., Bussell, J.D., O'Toole, N., Heazlewood, J.L., Castleden, I., Small, I.D., Smith, S.M. and Millar, A.H. (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol., 148, 18091829.
  • Ferro, M., Brugiere, S., Salvi, D. et al. (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteomics, 9, 10631084.
  • Foyer, C.H., Noctor, G. and Hodges, M. (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J. Exp. Bot., 62, 14671482.
  • Gibeaut, D.M., Hulett, J., Cramer, G.R. and Seemann, J.R. (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol., 115, 317319.
  • Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M. and Hell, R. (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell, 20, 168185.
  • Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W. and Zimmermann, P. (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics, 2008, 420747.
  • Kaur, N. and Hu, J. (2011) Defining the plant peroxisomal proteome: from arabidopsis to rice. Front. Plant Sci. 2, 120.
  • Keech, O., Zhou, W., Fenske, R., Colas-des-Francs-Small, C., Bussell, J.D., Badger, M.R. and Smith, S.M. (2012) The genetic dissection of a short-term response to low CO(2) supports the possibility for peroxide-mediated decarboxylation of photorespiratory intermediates in the peroxisome. Mol. Plant, 5, 14131416.
  • Kruger, N.J. and von Schaewen, A. (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol., 6, 236246.
  • Lejay, L., Wirth, J., Pervent, M., Cross, J.M., Tillard, P. and Gojon, A. (2008) Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol., 146, 20362053.
  • Leustek, T., Martin, M.N., Bick, J.A. and Davies, J.P. (2000) Pathways and Regulation of Sulfur Metabolism Revealed through Molecular and Genetic Studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 141165.
  • McElver, J., Tzafrir, I., Aux, G. et al. (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics, 159, 17511763.
  • Meinke, D., Muralla, R., Sweeney, C. and Dickerman, A. (2008) Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci., 13, 483491.
  • Meyer, T., Holscher, C., Schwoppe, C. and von Schaewen, A. (2011) Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. Plant J. 66, 745758.
  • Miclet, E., Stoven, V., Michels, P.A., Opperdoes, F.R., Lallemand, J.Y. and Duffieux, F. (2001) NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J. Biol. Chem., 276, 3484034846.
  • Millar, A.H., Sweetlove, L.J., Giege, P. and Leaver, C.J. (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol., 127, 17111727.
  • Møller, A.L., Pedas, P., Andersen, B., Svensson, B., Schjoerring, J.K. and Finnie, C. (2011) Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant, Cell Environ., 34, 20242037.
  • Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S., Rosso, M.G., Ache, P., Flugge, U.I. and Schneider, A. (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell, 17, 760775.
  • Nunes-Nesi, A., Fernie, A.R. and Stitt, M. (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 3, 973996.
  • Olinares, P.D., Ponnala, L. and van Wijk, K.J. (2010) Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol. Cell. Proteomics, 9, 15941615.
  • Pracharoenwattana, I., Cornah, J.E. and Smith, S.M. (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell, 17, 20372048.
  • Pracharoenwattana, I., Zhou, W., Keech, O., Francisco, P.B., Udomchalothorn, T., Tschoep, H., Stitt, M., Gibon, Y. and Smith, S.M. (2010) Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J. 62, 785795.
  • Reumann, S., Ma, C., Lemke, S. and Babujee, L. (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol., 136, 25872608.
  • Reumann, S., Babujee, L., Ma, C., Wienkoop, S., Siemsen, T., Antonicelli, G.E., Rasche, N., Luder, F., Weckwerth, W. and Jahn, O. (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell, 19, 31703193.
  • Reumann, S., Quan, S., Aung, K. et al. (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol., 150, 125143.
  • Robinson, S.J., Tang, L.H., Mooney, B.A. et al. (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol., 9, 101.
  • Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K. and Weisshaar, B. (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol., 53, 247259.
  • Samson, F., Brunaud, V., Duchene, S., De Oliveira, Y., Caboche, M., Lecharny, A. and Aubourg, S. (2004) FLAGdb++: a database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res., 32, Database issue 347350.
  • Scheible, W.R., Gonzalez-Fontes, A., Lauerer, M., Muller-Rober, B., Caboche, M. and Stitt, M. (1997a) Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco. Plant Cell, 9, 783798.
  • Scheible, W.R., Lauerer, M., Schulze, E.D., Caboche, M. and Stitt, M. (1997b) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 11, 671691.
  • Schwender, J., Ohlrogge, J.B. and Shachar-Hill, Y. (2003) A flux model of glycolysis and the oxidative pentose phosphate pathway in developing Brassica napus embryos. J. Biol. Chem., 278, 2944229453.
  • Sessions, A., Burke, E., Presting, G. et al. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell, 14, 29852994.
  • Thirkettle-Watts, D., McCabe, T.C., Clifton, R., Moore, C., Finnegan, P.M., Day, D.A. and Whelan, J. (2003) Analysis of the alternative oxidase promoters from soybean. Plant Physiol., 133, 11581169.
  • Tian, G.W., Mohanty, A., Chary, S.N. et al. (2004) High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol., 135, 2538.
  • Tschoep, H., Gibon, Y., Carillo, P., Armengaud, P., Szecowka, M., Nunes-Nesi, A., Fernie, A.R., Koehl, K. and Stitt, M. (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant, Cell Environ., 32, 300318.
  • Wakao, S., Andre, C. and Benning, C. (2008) Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol., 146, 277288.
  • Wang, R., Okamoto, M., Xing, X. and Crawford, N.M. (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol., 132, 556567.
  • Wang, R., Tischner, R., Gutierrez, R.A., Hoffman, M., Xing, X., Chen, M., Coruzzi, G. and Crawford, N.M. (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol., 136, 25122522.
  • Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. and Provart, N.J. (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE, 2, e718.
  • Wiszniewski, A.A.G., Zhou, W., Smith, S.M. and Bussell, J.D. (2009) Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant Mol. Biol., 69, 503515.
  • Wiszniewski, A.A.G., Smith, S.M. and Bussell, J.D. (2012) Conservation of two lineages of peroxisomal (Type I) 3-ketoacyl-CoA thiolases in land plants, specialization of the genes in Brassicaceae, and characterization of their expression in Arabidopsis thaliana. J. Exp. Bot., 63, 60936103.
  • Xiong, Y., DeFraia, C., Williams, D., Zhang, X. and Mou, Z. (2009) Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development. Plant Cell Physiol., 50, 12771291.
  • Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q. and van Wijk, K.J. (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE, 3, e1994.