SEARCH

SEARCH BY CITATION

References

  • Akkerman, M., Overdijk, E.J., Schel, J.H., Emons, A.M. and Ketelaar, T. (2012) Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol. 52, 18441855.
  • Allard, J.F., Ambrose, J.C., Wasteneys, G.O. and Cytrynbaum, E.N. (2010a) A mechanochemical model explains interactions between cortical microtubules in plants. Biophys. J. 99, 10821090.
  • Allard, J.F., Wasteneys, G.O. and Cytrynbaum, E.N. (2010b) Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations. Mol. Biol. Cell, 21, 278286.
  • Ambrose, J.C. and Wasteneys, G.O. (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol. Biol. Cell, 19, 47304737.
  • Ambrose, C. and Wasteneys, G.O. (2012) Nanoscale and geometric influences on the microtubule cytoskeleton in plants: thinking inside and outside the box. Protoplasma, 249(Suppl 1), S69S76.
  • Ambrose, C., Allard, J.F., Cytrynbaum, E.N. and Wasteneys, G.O. (2011) A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun. 2, 430.
  • Ambrose, C., Ruan, Y., Gardiner, J., Tamblyn, L.M., Catching, A., Kirik, V., Marc, J., Overall, R. and Wasteneys, G.O. (2013) CLASP Interacts with Sorting Nexin 1 to Link Microtubules and Auxin Transport via PIN2 Recycling in Arabidopsis thaliana. Dev. Cell, 24, 649659.
  • Arioli, T., Peng, L., Betzner, A.S. et al. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279, 717720.
  • Asaoka, R., Uemura, T., Ito, J., Fujimoto, M., Ito, E., Ueda, T. and Nakano, A. (2012) Arabidopsis RABA1 GTPases are involved in the transport between the trans-Golgi network and the plasma membrane and are required for salinity stress tolerance. Plant J. 73, 240249.
  • Avisar, D., Prokhnevsky, A.I., Makarova, K.S., Koonin, E.V. and Dolja, V.V. (2008) Myosin XI-K is required for rapid trafficking of golgi stacks, peroxisomes and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol. 146, 10981108.
  • Avisar, D., Abu-Abied, M., Belausov, E., Sadot, E., Hawes, C. and Sparkes, I.A. (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol. 150, 700709.
  • Avisar, D., Abu-Abied, M., Belausov, E. and Sadot, E. (2012) Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. J. Exp. Bot. 63, 241249.
  • Boevink, P., Oparka, K., Santa Cruz, S., Martin, B., Betteridge, A. and Hawes, C. (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441447.
  • Bottanelli, F., Foresti, O., Hanton, S. and Denecke, J. (2011) Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell, 23, 30073025.
  • Brandizzi, F., Snapp, E.L., Roberts, A.G., Lippincott-Schwartz, J. and Hawes, C. (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell, 14, 12931309.
  • Cai, G. and Cresti, M. (2012) Are kinesins required for organelle trafficking in plant cells? Front. Plant Sci. 3, 170.
  • Chan, J., Crowell, E., Eder, M., Calder, G., Bunnewell, S., Findlay, K., Vernhettes, S., Hofte, H. and Lloyd, C. (2010) The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls. J. Cell Sci. 123, 34903495.
  • Chen, S., Ehrhardt, D.W. and Somerville, C.R. (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc. Natl Acad. Sci. USA, 107, 1718817193.
  • Chow, C.M., Neto, H., Foucart, C. and Moore, I. (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell, 20, 101123.
  • Collings, D.A., Wasteneys, G.O. and Williamson, R.E. (1996) Actin-microtubule interactions in the alga Nitella: analysis of the mechanism by which microtubule depolymerization potentiates cytochalasin's effects on streaming. Protoplasma, 191, 178190.
  • Collings, D.A., Lill, A.W., Himmelspach, R. and Wasteneys, G.O. (2006) Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol. 170, 275290.
  • Contento, A.L. and Bassham, D.C. (2012) Structure and function of endosomes in plant cells. J. Cell Sci. 125, 35113518.
  • Crowell, E.F., Bischoff, V., Desprez, T., Rolland, A., Stierhof, Y.D., Schumacher, K., Gonneau, M., Hofte, H. and Vernhettes, S. (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell, 21, 11411154.
  • Cui, Y., Li, X., Chen, Q. et al. (2010) BLOS1, a putative BLOC-1 subunit, interacts with SNX1 and modulates root growth in Arabidopsis. J. Cell Sci. 123, 37273733.
  • DeBolt, S., Gutierrez, R., Ehrhardt, D.W., Melo, C.V., Ross, L., Cutler, S.R., Somerville, C. and Bonetta, D. (2007) Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc. Natl Acad. Sci. USA, 104, 58545859.
  • Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M. and Vernhettes, S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 104, 1557215577.
  • Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.D. and Schumacher, K. (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell, 18, 715730.
  • Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W. and Munnik, T. (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15, 26662679.
  • Dhonukshe, P., Weits, D.A., Cruz-Ramirez, A. et al. (2012) A PLETHORA-auxin transcription module controls cell division plane rotation through MAP65 and CLASP. Cell, 149, 383396.
  • Dixit, R. and Cyr, R. (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell, 16, 32743284.
  • Eren, E.C., Gautam, N. and Dixit, R. (2012) Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskeleton (Hoboken), 69, 144154.
  • Foissner, I. (2004) Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells. Protoplasma, 224, 145157.
  • Foissner, I., Menzel, D. and Wasteneys, G.O. (2009) Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells. Cell Motil. Cytoskeleton, 66, 142155.
  • Frey, N., Klotz, J. and Nick, P. (2009) Dynamic bridges–a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol. 50, 14931506.
  • Frey, N., Klotz, J. and Nick, P. (2010) A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J. Exp. Bot. 61, 34233437.
  • Friedman, J.R., Webster, B.M., Mastronarde, D.N., Verhey, K.J. and Voeltz, G.K. (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363375.
  • Friml, J., Yang, X., Michniewicz, M. et al. (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science, 306, 862865.
  • Fujita, M., Himmelspach, R., Hocart, C.H., Williamson, R.E., Mansfield, S.D. and Wasteneys, G.O. (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J. 66, 915928.
  • Fujita, M., Lechner, B., Barton, D.A., Overall, R.L. and Wasteneys, G.O. (2012) The missing link: do cortical microtubules define plasma membrane nanodomains that modulate cellulose biosynthesis? Protoplasma, 249(Suppl 1), S59S67.
  • Fujita, M., Himmelspach, R., Ward, J. et al. (2013) The any1 D604N mutation in the Arabidopsis thaliana cellulose synthase 1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol. 162, 7485.
  • Gardiner, J.C., Harper, J.D., Weerakoon, N.D., Collings, D.A., Ritchie, S., Gilroy, S., Cyr, R.J. and Marc, J. (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell, 13, 21432158.
  • Gardiner, J., Collings, D.A., Harper, J.D. and Marc, J. (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol. 44, 687696.
  • Geldner, N., Friml, J., Stierhof, Y.D., Jurgens, G. and Palme, K. (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413, 425428.
  • Giannoutsou, E., Galatis, B., Zachariadis, M. and Apostolakos, P. (2012) Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band. Cytoskeleton (Hoboken), 69, 252265.
  • Grolig, F., Williamson, R.E., Parke, J., Miller, C. and Anderton, B.H. (1988) Myosin and Ca2+-sensitive streaming in the alga Chara: detection of two polypeptides reacting with a monoclonal anti-myosin and their localization in the streaming endoplasm. Eur. J. Cell Biol. 47, 2231.
  • Gu, Y., Kaplinsky, N., Bringmann, M., Cobb, A., Carroll, A., Sampathkumar, A., Baskin, T.I., Persson, S. and Somerville, C.R. (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc. Natl Acad. Sci. USA, 107, 1286612871.
  • Gunning, B.E.S. (1999) Case Study 4.2. A perspective on plants: significance of cell walls. In Plants in Action (Atwell, B.J., Kriedemann, P.E. and Turnbull, C.G.N., eds). South Yarra: Macmillan Education Australia Pty Ltd, pp. 137142.
  • Gutierrez, R., Lindeboom, J.J., Paredez, A.R., Emons, A.M. and Ehrhardt, D.W. (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11, 797806.
  • Hamada, T., Tominaga, M., Fukaya, T., Nakamura, M., Nakano, A., Watanabe, Y., Hashimoto, T. and Baskin, T.I. (2012) RNA processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules. Plant Cell Physiol. 53, 699708.
  • Hicks, G.R., Rojo, E., Hong, S., Carter, D.G. and Raikhel, N.V. (2004) Geminating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol. 134, 12271239.
  • Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. (2009) Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682696.
  • Hong, Z., Yang, Y., Zhang, C., Niu, Y., Li, K., Zhao, X. and Liu, J.J. (2009) The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport. Cell Res. 19, 13341349.
  • Ito, K., Ikebe, M., Kashiyama, T., Mogami, T., Kon, T. and Yamamoto, K. (2007) Kinetic mechanism of the fastest motor protein, Chara myosin. J. Biol. Chem. 282, 1953419545.
  • Jaillais, Y., Fobis-Loisy, I., Miege, C., Rollin, C. and Gaude, T. (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature, 443, 106109.
  • Kakar, K., Zhang, H., Scheres, B. and Dhonukshe, P. (2013) CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature, 495, 529533.
  • Kawamura, E. and Wasteneys, G.O. (2008) MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J. Cell Sci. 121, 41144123.
  • Kersey, Y.M., Hepler, P.K., Palevitz, B.A. and Wessells, N.K. (1976) Polarity of actin filaments in Characean algae. Proc. Natl Acad. Sci. USA, 73, 165167.
  • Kim, H., Park, M., Kim, S.J. and Hwang, I. (2005) Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. Plant Cell, 17, 888902.
  • Lam, S.K., Siu, C.L., Hillmer, S., Jang, S., An, G., Robinson, D.G. and Jiang, L. (2007) Rice SCAMP1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell, 19, 296319.
  • Ledbetter, M.C. and Porter, K.R. (1963) A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239250.
  • Lee, Y.R. and Liu, B. (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol. 136, 38773883.
  • Lee, Y.R., Giang, H.M. and Liu, B. (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell, 13, 24272439.
  • Li, J., Jiang, J., Qian, Q. et al. (2011) Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell, 23, 628640.
  • Li, J., Xu, Y. and Chong, K. (2012) The novel functions of kinesin motor proteins in plants. Protoplasma, 249(Suppl 2), S95S100.
  • Lu, L., Lee, Y.R., Pan, R., Maloof, J.N. and Liu, B. (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol. Biol. Cell, 16, 811823.
  • Martiniere, A., Lavagi, I., Nageswaran, G. et al. (2012) Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl Acad. Sci. USA, 109, 1280512810.
  • Matheson, L.A., Hanton, S.L. and Brandizzi, F. (2006) Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. Curr. Opin. Plant Biol. 9, 601609.
  • Miao, Y., Li, K.Y., Li, H.Y., Yao, X. and Jiang, L. (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J. 56, 824839.
  • Moreau, P., Brandizzi, F., Hanton, S., Chatre, L., Melser, S., Hawes, C. and Satiat-Jeunemaitre, B. (2007) The plant ER-Golgi interface: a highly structured and dynamic membrane complex. J. Exp. Bot. 58, 4964.
  • Morimatsu, M., Nakamura, A., Sumiyoshi, H., Sakaba, N., Taniguchi, H., Kohama, K. and Higashi-Fujime, S. (2000) The molecular structure of the fastest myosin from green algae, Chara. Biochem. Biophys. Res. Commun. 270, 147152.
  • Motes, C.M., Pechter, P., Yoo, C.M., Wang, Y.S., Chapman, K.D. and Blancaflor, E.B. (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma, 226, 109123.
  • Nebenführ, A., Gallagher, L.A., Dunahay, T.G., Frohlick, J.A., Mazurkiewicz, A.M., Meehl, J.B. and Staehelin, L.A. (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 11271142.
  • Paradez, A., Wright, A. and Ehrhardt, D.W. (2006) Microtubule cortical array organization and plant cell morphogenesis. Curr. Opin. Plant Biol. 9, 571578.
  • Peremyslov, V.V., Klocko, A.L., Fowler, J.E. and Dolja, V.V. (2012) Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-actin. Front. Plant Sci. 3, 184.
  • Peremyslov, V.V., Prokhnevsky, A.I. and Dolja, V.V. (2010) Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell, 22, 18831897.
  • Preuss, M.L., Kovar, D.R., Lee, Y.R., Staiger, C.J., Delmer, D.P. and Liu, B. (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol. 136, 39453955.
  • Reddy, A.S. (2001) Molecular motors and their functions in plants. Int. Rev. Cytol. 204, 97178.
  • Reddy, A.S. and Day, I.S. (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol. 2, RESEARCH0024.
  • Reisen, D. and Hanson, M.R. (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol. 7, 6.
  • Reisen, D., Marty, F. and Leborgne-Castel, N. (2005) New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol. 5, 13.
  • Roland, J.T., Bryant, D.M., Datta, A., Itzen, A., Mostov, K.E. and Goldenring, J.R. (2011) Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA, 108, 27892794.
  • Saint-Jore, C.M., Evins, J., Batoko, H., Brandizzi, F., Moore, I. and Hawes, C. (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J. 29, 661678.
  • Saito, C., Morita, M.T., Kato, T. and Tasaka, M. (2005) Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the Arabidopsis inflorescence stem. Plant Cell, 17, 548558.
  • Schapire, A.L., Voigt, B., Jasik, J. et al. (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell, 20, 33743388.
  • Seabra, M.C. and Coudrier, E. (2004) Rab GTPases and myosin motors in organelle motility. Traffic, 5, 393399.
  • daSilva, L.L., Snapp, E.L., Denecke, J., Lippincott-Schwartz, J., Hawes, C. and Brandizzi, F. (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell, 16, 17531771.
  • Sparkes, I., Runions, J., Hawes, C. and Griffing, L. (2009a) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell, 21, 39373949.
  • Sparkes, I.A., Ketelaar, T., Ruijter, N.C. and Hawes, C. (2009b) Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic, 10, 567571.
  • Sparkes, I., Hawes, C. and Frigerio, L. (2011) FrontiERs: movers and shapers of the higher plant cortical endoplasmic reticulum. Curr. Opin. Plant Biol. 14, 658665.
  • Spector, A.A. and Yorek, M.A. (1985) Membrane lipid composition and cellular function. J. Lipid Res. 26, 10151035.
  • Stefan, C.J., Manford, A.G. and Emr, S.D. (2013) ER-PM connections: sites of information transfer and inter-organelle communication. Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2013.02.020.
  • Stefano, G., Renna, L., Moss, T.J., McNew, J.A. and Brandizzi, F. (2012) In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus largely relies on a non-essential GTPase, RHD3. Plant J. 69, 957966.
  • Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Galweiler, L., Palme, K. and Jurgens, G. (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 286, 316318.
  • Stephens, D.J. (2012) Functional coupling of microtubules to membranes - implications for membrane structure and dynamics. J. Cell Sci. 125, 27952804.
  • Stierhof, Y.D., Viotti, C., Scheuring, D., Sturm, S. and Robinson, D.G. (2013) Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma, 250, 235240.
  • Sugimoto, K., Williamson, R.E. and Wasteneys, G.O. (2001) Wall architecture in the cellulose-deficient rsw1 mutant of Arabidopsis thaliana: microfibrils but not microtubules lose their transverse alignment before microfibrils become unrecognizable in the mitotic and elongation zones of roots. Protoplasma, 215, 172183.
  • Traer, C.J., Rutherford, A.C., Palmer, K.J., Wassmer, T., Oakley, J., Attar, N., Carlton, J.G., Kremerskothen, J., Stephens, D.J. and Cullen, P.J. (2007) SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 9, 13701380.
  • Tse, Y.C., Mo, B., Hillmer, S., Zhao, M., Lo, S.W., Robinson, D.G. and Jiang, L. (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell, 16, 672693.
  • Ueda, H., Yokota, E., Kutsuna, N., Shimada, T., Tamura, K., Shimmen, T., Hasezawa, S., Dolja, V.V. and Hara-Nishimura, I. (2011) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc. Natl Acad. Sci. USA, 107, 68946899.
  • Viotti, C., Bubeck, J., Stierhof, Y.D. et al. (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell, 22, 13441357.
  • Ward, T.H. and Brandizzi, F. (2004) Dynamics of proteins in Golgi membranes: comparisons between mammalian and plant cells highlighted by photobleaching techniques. Cell. Mol. Life Sci. 61, 172185.
  • Wassmer, T., Attar, N., Harterink, M. et al. (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev. Cell, 17, 110122.
  • Wasteneys, G.O. (2002) Microtubule organization in the green kingdom: chaos or self-order? J. Cell Sci. 115, 13451354.
  • Wasteneys, G.O. and Ambrose, J.C. (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19, 6271.
  • Wasteneys, G.O. and Williamson, R.E. (1991) Endoplasmic microtubules and nucleus-associated actin rings in Nitella internodal cells. Protoplasma, 162, 8698.
  • Wasteneys, G.O., Collings, D.A., Gunning, B.E.S., Hepler, P.K. and Menzel, D. (1996) Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin strands and chloroplast actin rings. Protoplasma, 190, 2538.
  • Wei, L., Zhang, W., Liu, Z. and Li, Y. (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol. 9, 138.
  • Williamson, R.E. (1974) Actin in the alga, Chara corallina. Nature, 248, 801802.
  • Xu, T., Qu, Z., Yang, X., Qin, X., Xiong, J., Wang, Y., Ren, D. and Liu, G. (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J. 421, 171180.
  • Yamamoto, K., Shimada, K., Ito, K., Hamada, S., Ishijima, A., Tsuchiya, T. and Tazawa, M. (2006) Chara myosin and the energy of cytoplasmic streaming. Plant Cell Physiol. 47, 14271431.
  • Yamazaki, T., Takata, N., Uemura, M. and Kawamura, Y. (2010) Arabidopsis synaptotagmin SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J. Biol. Chem. 285, 2316523176.
  • Yokota, E., Ueda, S., Tamura, K., Orii, H., Uchi, S., Sonobe, S., Hara-Nishimura, I. and Shimmen, T. (2009) An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. J. Exp. Bot. 60, 197212.
  • Zhang, H., Zhang, L., Gao, B., Fan, H., Jin, J., Botella, M.A., Jiang, L. and Lin, J. (2011) Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS ONE, 6, e26477.
  • Zhong, R., Burk, D.H., Morrison, W.H. III and Ye, Z.H. (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell, 14, 31013117.
  • Zhu, C. and Dixit, R. (2011) Single molecule analysis of the Arabidopsis FRA1 kinesin shows that it is a functional motor protein with unusually high processivity. Mol. Plant, 4, 879885.
  • Zhu, C. and Dixit, R. (2012) Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma, 249, 887899.