SEARCH

SEARCH BY CITATION

References

  • Ahn, Y.O., Zheng, M., Bevan, D.R. et al. (2007) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochem. 68, 15101520.
  • Bartels, D. and Salamini, F. (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum: A contribution to the study of drought tolerance at the molecular level. Plant Physiol. 127, 13461353.
  • Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D. and Salamini, F. (1990) Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta, 181, 2734.
  • Bernacchia, G., Schwall, G., Lottspeich, F., Salamini, F. and Bartels, D. (1995) The transketolase gene family of the resurrection plant Craterostigma plantagineum: differential expression during the rehydration phase. EMBO J. 14, 610618.
  • Bernacchia, G., Salamini, F. and Bartels, D. (1996) Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum. Plant Physiol. 111, 10431050.
  • Bhalla, P.L. and Dalling, M.J. (1984) Characteristics of a β-galactosidase associated with the stroma of chloroplasts prepared from mesophyll protoplasts of the primary leaf of wheat. Plant Physiol. 76, 9295.
  • Bianchi, G., Gamba, A., Murelli, C., Salamini, F. and Bartels, D. (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J. 1, 355359.
    Direct Link:
  • Bianchi, G., Gamba, A., Murelli, C., Salamini, F. and Bartels, D. (1992) Low molecular weight solutes in desiccated and ABA-treated calli and leaves of Craterostigma plantagineum. Phytochemistry, 31, 19171922.
  • Bianchi, G., Gamba, A., Limirolli, R., Pozzi, N., Elster, R., Salamini, F. and Bartels, D. (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87, 223226.
  • Browne, J., Tunnacliffe, A. and Burnell, A. (2002) Plant desiccation gene found in a nematode. Nature, 416, 38.
  • Browse, J., Warwick, N., Somerville, C.R. and Slack, C.R. (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem. J. 235, 2531.
  • Cullis, P.R., Hope, M.J., De Kruijff, B., Verkleij, A.J. and Tilcock, C.P.S. (1985) Structural properties and functional roles of phospholipids in biological membranes. In Phospholipids and Cellular Regulation (Kuo, J.F., ed). Boca Raton, FL: CRC Press, pp. 159.
  • Daklma, W.S., Zarrouk, M. and Cherif, A. (1995) Effects of drought-stress on lipids in rape leaves. Phytochem. 40, 13831386.
  • Devaiah, S.P., Roth, M.R., Baughman, E., Li, M., Tamura, P., Jeannotte, R., Welti, R. and Wang, X. (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dα1 knockout mutant. Phytochem. 67, 19071924.
  • Dinakar, C. and Bartels, D. (2012) Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. Planta, 236, 541555.
  • Dörmann, P., Balbo, I. and Benning, C. (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science, 284, 21812184.
  • Fourrier, N., Bedard, J., Lopez-Juez, E., Barbrook, A., Bowyer, J., Jarvis, P., Warren, G. and Thorlby, G. (2008) A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis. Plant J. 55, 734745.
  • Frank, W., Munnik, T., Kerkmann, K., Salamini, F. and Bartels, D. (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell, 12, 111123.
  • Froehlich, J., Benning, C. and Dörmann, P. (2001) The digalactosyldiacylglycerol synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with MGDG synthase for DGDG biosynthesis. J. Biol. Chem. 276, 3180631812.
  • Fujino, Y. and Miyazawa, T. (1979) Chemical structures of mono-, di-, tri- and tetraglycosyl glycerides in rice bran. Biochim. Biophys. Acta, 572, 442451.
  • Gantulga, D., Ahn, Y.O., Zhou, C., Battogtokh, D., Bevan, D.R., Winkel, B.S.J. and Esen, A. (2009) Comparative characterization of the Arabidopsis subfamily a1-galactosidases. Phytochem. 70, 19992009.
  • Garay-Arroyo, A., Colmenero-Flores, J., Garciarrubio, A. and Covarrubias, A. (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 275, 56685674.
  • Gigon, A., Matos, A.R., Laffray, D., Zuily-Fodil, Y. and Pham-Thi, A.T. (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann. Bot. 94, 345351.
  • Goñi, F.M. and Alonso, A. (1999) Structure and functional properties of diacylglycerols in membranes. Prog. Lipid Res. 38, 148.
  • Heinz, E. and Roughan, P.G. (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol. 72, 273279.
  • Hilbricht, T., Varotto, S., Sgaramella, V., Bartels, D., Salamini, F. and Furini, A. (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol. 179, 877887.
  • Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431438.
  • Hong, Y., Pan, X., Welti, R. and Wang, X. (2008) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell, 20, 803816.
  • Hölzl, G., Leipelt, M., Ott, C., Zähringer, U., Lindner, B., Warnecke, D. and Heinz, E. (2005) Processive lipid galactosyl/glucosyltransferases from Agrobacterium tumefaciens and Mesorhizobium loti display multiple specificities. Glycobiol, 15, 874886.
  • Kelly, A.A. and Dörmann, P. (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem. 277, 11661173.
  • Kelly, A.A. and Dörmann, P. (2004) Green light for galactolipid trafficking. Curr. Opin. Plant Biol. 7, 262269.
  • Koag, M.C., Wilkens, S., Fenton, R.D., Resnik, J., Vo, E. and Close, T.J. (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 150, 15031514.
  • Kojima, M., Seki, K., Ohnishi, M., Ito, S. and Fujino, Y. (1990) Structure of novel glyceroglycolipids in Adzuki bean (Vigna angularis) seeds. Biochem. Cell Biol. 68, 5964.
  • Löfke, C., Ischebeck, T., König, S., Freitag, S. and Heilmann, I. (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem. J. 413, 115124.
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S. and Mittler, R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ. 33, 453467.
  • Moellering, E.R. and Benning, C. (2011) Galactoglycerolipid metabolism under stress: a time for remodelling. Trends Plant Sci. 16, 98107.
  • Moellering, E.R., Muthan, B. and Benning, C. (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science, 330, 226228.
  • Monteiro de Paula, F., Pham Thi, A.T., Vieira da Silva, J., Justin, A.M., Demandre, C. and Mazliak, P. (1990) Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci. 66, 185193.
  • Monteiro de Paula, F., Pham Thi, A.T., Zuily Fodil, Y., Ferrari-Iliou, R., Vieira da Silva, J. and Mazliak, P. (1993) Effect of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata. Plant Physiol. Biochem. 31, 707715.
  • Mueller-Roeber, B. and Pical, C. (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 130, 2246.
  • Munnik, T. and Testerink, C. (2009) Plant phospholipid signaling: “in a nutshell”. J. Lipid Res. 50(Supplement), S260S265.
  • Munnik, T. and Vermeer, J.E.M. (2010) Osmotic stress-induced phosphoinositide and inositolphosphate signalling in plants. Plant, Cell Environ. 33, 655669.
  • Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, L. (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature, 356, 710713.
  • Navari-Izzo, F., Vangioni, N. and Quartacci, M.F. (1990) Lipids of soybean and sunflower seedlings grown under drought conditions. Phytochem. 29, 21192123.
  • Navari-Izzo, F., Ricci, F., Vazzana, C. and Quartacci, M.F. (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol. Plant. 94, 135142.
  • Petersen, J., Eriksson, S.K., Harryson, P., Pierog, S., Colby, T., Bartels, D. and Röhrig, H. (2012) The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum binds phosphatidic acid and protects enzymes from damaging effects caused by desiccation. J. Exp. Bot. 63, 49194929.
  • Phillips, J.R., Fischer, E., Baron, M., van den Dries, N., Facchinelli, F., Kutzer, M., Rahmanzadeh, R., Remus, D. and Bartels, D. (2008) Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J. 54, 938948.
  • Quartacci, M.F., Forli, M., Dalla-Vecchia, F., Bochicchio, A. and Navari-Izzo, F. (1997) Desiccation-tolerant Sporobolus stapfianus: lipid composition and cellular ultrastructure during dehydration and rehydration. J. Exp. Bot. 48, 12691279.
  • Rodriguez, M.C., Edsgärd, D., Hussain, S.S., Alquezar, D., Rasmussen, M., Gilbert, T., Nielsen, B.H., Bartels, D. and Mundy, J. (2010) Transcriptomes of the desiccation tolerant resurrection plant Craterostigma plantagineum. Plant J. 63, 212228.
  • Sahsah, Y., Campos, P., Gareil, M., Zuily-Fodil, Y. and Pham-Thi, A.T. (1998) Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress. Physiol. Plant. 104, 577586.
  • Schneider, K., Wells, B., Schmelzer, E., Salamini, F. and Bartels, D. (1993) Desiccation leads to the rapid accumulation of both cytosol and chloroplast proteins in the resurrection plant Craterostigma plantagineum. Hochst. Planta, 189, 120131.
  • Sprague, S.G. (1987) Structural and functional consequences of galactolipids on thylakoid membrane organization. J. Bioenerg. Biomemb. 19, 691703.
  • Stefanov, K., Markoska, Y.K., Kimenov, G.P. and Popov, S.S. (1992) Lipid and sterol changes in leaves of Haberlea rhodopensis and Ramonda species at transition from biosis into anabiosis and vice versa caused by water stress. Phytochemistry, 30, 461466.
  • Stevanovic, B., Pham-Thi, A.T., Monteiro de Paula, F. and Vieira da Silva, J. (1992) Effects of dehydration and rehydration on the polar lipid and fatty acid composition of Ramonda species. Can. J. Bot. 70, 107113.
  • Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., Teyssier, E., Payet, N., Avelange-Macherel, M.H. and Macherel, D. (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell, 19, 15801589.
  • Torres-Franklin, M.L., Gigon, A., de Melo, D.F., Zuily-Fodil, Y. and Pham-Thi, A.T. (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol. Plant. 131, 201210.
  • Valenzuela-Avendaño, J.P., Estrada-Mota, I.A., Liyama-Uc, G., Souza-Perera, R., Valenzuela-Soto, E.M. and Zúñiga-Aguilar, J.J. (2005) Use of a simple method to isolate intact RNA from partially hydrated Selaginella lepidophylla plants. Plant Mol. Biol. Rep. 2, 199200.
  • Wang, W., Yang, X., Tangchaiburana, S. et al. (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell, 20, 31633179.
  • Webb, M.S. and Green, B.R. (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biophys. Acta, 1060, 133158.
  • Xu, C., Fan, J., Riekhof, W., Froehlich, J.E. and Benning, C. (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J. 22, 23702379.
  • Zhai, S.M., Gao, Q., Xue, H.W., Sui, Z.H., Yue, G.D., Yang, A.F. and Zhang, J.R. (2012) Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta, 235, 6984.
  • Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S. and Ben-Hayyim, G. (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 44, 361371.
  • Zhang, M., Fan, J., Taylor, D.C. and Ohlrogge, J.B. (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 21, 38853901.