SEARCH

SEARCH BY CITATION

References

  • Agusti, J., Herold, S., Schwarz, M. et al. (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl Acad. Sci. USA, 108, 2024220247.
  • Akiyama, K., Matsuzaki, K.-I. and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824827.
  • Alder, A., Jamil, M., Marzorati, M. et al. (2012) The path from β–carotene to carlactone, a strigolactone-like plant hormone. Science, 335, 13481351.
  • Besserer, A., Puech-Pagès, V., Kiefer, P. et al. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4, e226.
  • Beveridge, C.A., Ross, J.J. and Murfet, I.C. (1996) Branching in pea (action of genes Rms3 and Rms4). Plant Physiol. 110, 859865.
  • Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H. and Leyser, O. (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 12321238.
  • Booker, J., Sieberer, T., Wright, W. et al. (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell, 8, 443449.
  • Boyer, F.-D., de Saint Germain, A., Pillot, J.-P. et al. (2012) Structure–activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159, 15241544.
  • Brewer, P.B., Koltai, H. and Beveridge, C.A. (2013) Diverse roles of strigolactones in plant development. Mol. Plant, 6, 1828.
  • Bythell-Douglas, R., Waters, M.T., Scaffidi, A., Flematti, G.R., Smith, S.M. and Bond, C.S. (2013) The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS ONE, 8, e54758.
  • Challis, R.J., Hepworth, J., Mouchel, C., Waites, R. and Leyser, O. (2013) A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol. 161, 18851902.
  • Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. and Egley, G.H. (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154, 11891190.
  • Cook, C.E., Whichard, L.P., Wall, M., Egley, G.H., Coggon, P., Luhan, P.A. and McPhail, A.T. (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J. Am. Chem. Soc. 94, 61986199.
  • Delaux, P.-M., Xie, X., Timme, R.E. et al. (2012) Origin of strigolactones in the green lineage. New Phytol. 195, 857871.
  • Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. (2004) A compound from smoke that promotes seed germination. Science, 305, 977.
  • Flematti, G.R., Waters, M.T., Scaffidi, A., Merritt, D.J., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2013) Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol. Plant, 6, 2937.
  • Fukui, K., Ito, S., Ueno, K., Yamaguchi, S., Kyozuka, J. and Asami, T. (2011) New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg. Med. Chem. Lett. 21, 49054908.
  • Gomez-Roldan, V., Fermas, S., Brewer, P.B. et al. (2008) Strigolactone inhibition of shoot branching. Nature, 455, 189194.
  • Guo, Y., Zheng, Z., La Clair, J.J., Chory, J. and Noel, J.P. (2013) Smoke-derived karrikin perception by the α/β–hydrolase KAI2 from Arabidopsis. Proc. Natl Acad. Sci. USA, 110, 82848289.
  • Hamiaux, C., Drummond Revel, S.M., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R.D. and Snowden, K.C. (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 20322036.
  • Kagiyama, M., Hirano, Y., Mori, T., Kim, S.-Y., Kyozuka, J., Seto, Y., Yamaguchi, S. and Hakoshima, T. (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells, 18, 147160.
  • Kohlen, W., Charnikhova, T., Liu, Q. et al. (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974987.
  • Macías, F.A., García-Díaz, M.D., Pérez-de-Luque, A., Rubiales, D. and Galindo, J.C.G. (2009) New chemical clues for broomrape–sunflower host–parasite interactions: synthesis of guaianestrigolactones. J. Agric. Food Chem. 57, 58535864.
  • Mangnus, E., Dommerholt, F., de Jong, R. and Zwanenburg, B. (1992) Improved synthesis of strigol analogue GR24 and evaluation of the biological activity of its diastereomers. J. Agric. Food Chem. 40, 12301235.
  • Mayzlish-Gati, E., De Cuyper, C., Goormachtig, S. et al. (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160, 13291341.
  • Nelson, D.C., Flematti, G.R., Riseborough, J.-A., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 107, 70957100.
  • Nelson, D.C., Scaffidi, A., Dun, E.A., Waters, M.T., Flematti, G.R., Dixon, K.W., Beveridge, C.A., Ghisalberti, E.L. and Smith, S.M. (2011) F–box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 108, 88978902.
  • Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 63, 107130.
  • Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G., Yoneyama, K., Nogué, F. and Rameau, C. (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development, 138, 15311539.
  • Rasmussen, A., Mason, M.G., De Cuyper, C. et al. (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 158, 19761987.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T. et al. (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721734.
  • Ruyter-Spira, C., Al–Babili, S., van der Krol, S. and Bouwmeester, H. (2013) The biology of strigolactones. Trends Plant Sci. 18, 7283.
  • Scaffidi, A., Waters, M.T., Bond, C.S., Dixon, K.W., Smith, S.M., Ghisalberti, E.L. and Flematti, G.R. (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg. Med. Chem. Lett. 22, 37433746.
  • Shen, H., Zhu, L., Bu, Q.-Y. and Huq, E. (2012) MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant, 5, 224236.
  • Shinohara, N., Taylor, C. and Leyser, O. (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 11, e1001474.
  • Snowden, K.C., Simkin, A.J., Janssen, B.J. et al. (2005) The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell, 17, 746759.
  • Stirnberg, P., van De Sande, K. and Leyser, H.M.O. (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129, 11311141.
  • Stirnberg, P., Furner, I.J. and Leyser, O. (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 8094.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., Yamaguchi, S. and McCourt, P. (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6, 741749.
  • Umehara, M., Hanada, A., Yoshida, S. et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195200.
  • Waters, M.T. and Smith, S.M. (2013) KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol. Plant, 6, 6375.
  • Waters, M.T., Brewer, P.B., Bussell, J.D., Smith, S.M. and Beveridge, C.A. (2012a) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 159, 10731085.
  • Waters, M.T., Bussell, J.D. and Jost, R. (2012b) Arabidopsis hydroponics and shoot branching assay [WWW document]. URL http://www.bio-protocol.org/wenzhang.aspx?id=264 [accessed on 24 January 2013].
  • Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. (2012c) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 139, 12851295.
  • Waters, M.T., Scaffidi, A., Flematti, G.R. and Smith, S.M. (2012d) Karrikins force a rethink of strigolactone mode of action. Plant Signal. Behav. 7, 969972.
  • Weight, C., Parnham, D. and Waites, R. (2008) LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation. Plant J. 53, 578586.
  • Wu, C., Gao, X., Deng, L., Zhou, Y., Wu, Y. and Xie, H. (2011) Preparation method of C–14 enol ether. Chinese patent number CN102180774A, International classes C07C43/162 and C07C41/01.
  • Zhao, L.-H., Zhou, X.E., Wu, Z.-S. et al. (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436439.